One-shot information theory entertains a plethora of entropic quantities, such as the smooth max-divergence, hypothesis testing divergence, and information spectrum divergence, that characterize various operational tasks in quantum information theory and are used to analyze their asymptotic behavior. Tight inequalities between these quantities are thus of immediate interest. In this note, we use a minimax approach (appearing previously, for example, in the proofs of the quantum substate theorem), to simplify the quantum problem to a commutative one, which allows us to derive such inequalities. Our derivations are conceptually different from previous arguments and in some cases lead to tighter relations. We hope that the approach discussed here can lead to progress in open problems in quantum Shannon theory and exemplify this by applying it to a simple case of the joint smoothing problem.

1.
Beigi
,
S.
, “
Sandwiched Rényi divergence satisfies data processing inequality
,”
J. Math. Phys.
54
(
12
),
122202
(
2013
).
2.
Datta
,
N.
, “
Min- and max-relative entropies and a new entanglement monotone
,”
IEEE Trans. Inf. Theory
55
(
6
),
2816
2826
(
2009
).
3.
Drescher
,
L.
and
Fawzi
,
O.
, “
On simultaneous min-entropy smoothing
,” in
2013 IEEE International Symposium on Information Theory
(
IEEE
,
2013
), pp.
161
165
.
4.
Dupuis
,
F.
,
Kraemer
,
L.
,
Faist
,
P.
,
Renes
,
J. M.
, and
Renner
,
R.
, “
Generalized entropies
,” in
Proceedings of the XVIIth International Congress on Mathematical Physics
(
Aalborg
,
Denmark
,
2012
), pp.
134
153
.
5.
Frank
,
R. L.
and
Lieb
,
E. H.
, “
Monotonicity of a relative Rényi entropy
,”
J. Math. Phys.
54
(
12
),
122201
(
2013
).
6.
Jain
,
R.
and
Nayak
,
A.
, “
Short proofs of the quantum substate theorem
,”
IEEE Trans. Inf. Theory
58
(
6
),
3664
3669
(
2012
).
7.
Jain
,
R.
,
Radhakrishnan
,
J.
, and
Sen
,
P.
, “
Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states
,” in
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002
(
IEEE
,
2002
), pp.
429
438
.
8.
Jain
,
R.
,
Radhakrishnan
,
J.
, and
Sen
,
P.
, “
A property of quantum relative entropy with an application to privacy in quantum communication
,”
J. ACM
56
(
6
),
33:1
33:32
(
2009
).
9.
Müller-Lennert
,
M.
,
Dupuis
,
F.
,
Szehr
,
O.
,
Fehr
,
S.
, and
Tomamichel
,
M.
, “
On quantum Rényi entropies: A new generalization and some properties
,”
J. Math. Phys.
54
(
12
),
122203
(
2013
).
10.
Renner
,
R.
, “
Security of quantum key distribution
,” Ph.D. thesis,
ETH Zurich
,
2005
; e-print arXiv:quant-ph/0512258.
11.
Sen
,
P.
, “
A one-shot quantum joint typicality lemma
,” e-print arXiv:1806.07278 (
2018
).
12.
Sion
,
M.
, “
On general minimax theorems
,”
Pac. J. Math.
8
,
171
176
(
1958
).
13.
Tomamichel
,
M.
, “
A framework for non-asymptotic quantum information theory
,” Ph.D. thesis,
ETH Zurich
,
2012
; e-print arXiv:1203.2142.
14.
Tomamichel
,
M.
,
Colbeck
,
R.
, and
Renner
,
R.
, “
Duality between smooth min- and max-entropies
,”
IEEE Trans. Inf. Theory
56
(
9
),
4674
4681
(
2010
).
15.
Tomamichel
,
M.
and
Hayashi
,
M.
, “
A hierarchy of information quantities for finite block length analysis of quantum tasks
,”
IEEE Trans. Inf. Theory
59
(
11
),
7693
7710
(
2013
).
16.
Tomamichel
,
M.
and
Leverrier
,
A.
, “
A largely self-contained and complete security proof for quantum key distribution
,”
Quantum
1
,
14
(
2017
).
17.
Wilde
,
M. M.
,
Winter
,
A.
, and
Yang
,
D.
, “
Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy
,”
Commun. Math. Phys.
331
(
2
),
593
622
(
2014
).
You do not currently have access to this content.