The Painlevé equations arise from the study of Hankel determinants generated by moment matrices, whose weights are expressed as the product of “classical” weights multiplied by suitable “deformation factors,” usually dependent on a “time variable” t. From ladder operators [see A. Magnus, J. Comput. Appl. Math. 57(1-2), 215–237 (1995)], one finds second order linear ordinary differential equations for associated orthogonal polynomials with coefficients being rational functions. The Painlevé and related functions appear as the residues of these rational functions. We will be interested in the situation when n, the order of the Hankel matrix and also the degree of the polynomials Pn(x) orthogonal with respect to the deformed weights, gets large. We show that the second order linear differential equations satisfied by Pn(x) are particular cases of Heun equations when n is large. In some sense, monic orthogonal polynomials generated by deformed weights mentioned below are solutions of a variety of Heun equations. Heun equations are of considerable importance in mathematical physics, and in the special cases, they degenerate to the hypergeometric and confluent hypergeometric equations. In this paper, we look at three types of weights: the Jacobi type, the Laguerre type, and the weights deformed by the indicator function of χ(a,b)(x) and the step function θ(x). In particular, we consider the following Jacobi type weights: (1.1) xα(1 − x)βetx, x ∈ [0, 1], α, β, t > 0; (1.2) xα(1 − x)βet/x, x ∈ (0, 1], α, β, t > 0; (1.3) $(1−x2)α(1−k2x2)β, x∈[−1,1], α,β>0, k2∈(0,1)$; the Laguerre type weights: (2.1) xα(x + t)λex, x ∈ [0, ), t, α, λ > 0; (2.2) xαext/x, x ∈ (0, ), α, t > 0; and another type of deformation when the classical weights are multiplied by χ(a,b)(x) or θ(x): (3.1) $e−x2(1−χ(−a,a)(x)), x∈R, a>0$; (3.2) $(1−x2)α(1−χ(−a,a)(x)), x∈[−1,1], a∈(0,1), α>0$; (3.3) xαex(A + (xt)), x ∈ [0, ), α, t > 0, A ≥ 0, A + B ≥ 0. The weights mentioned above were studied in a series of papers related to the deformation of “classical” weights.

1.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover Publications, Inc.
,
New York
,
1992
), Vol. 55.
2.
E.
Basor
and
Y.
Chen
, “
Painlevé V and the distribution function of a discontinuous linear statistic in the Laguerre unitary ensembles
,”
J. Phys. A: Math. Theor.
42
(
3
),
035203
(
2009
).
3.
E.
Basor
and
Y.
Chen
, “
Perturbed Hankel determinants
,”
J. Phys. A: Math. Gen.
38
(
47
),
10101
10106
(
2005
).
4.
E.
Basor
and
Y.
Chen
, “
Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory
,”
Math. Methods Appl. Sci.
38
(
18
),
4840
4851
(
2015
).
5.
E. L.
Basor
,
Y.
Chen
, and
N. S.
Haq
, “
Asymptotics of determinants of Hankel matrices via non-linear difference equations
,”
J. Approximations Theory
198
,
63
110
(
2015
).
6.
E.
Basor
,
Y.
Chen
, and
T.
Ehrhardt
, “
Painlevé V and time-dependent Jacobi polynomials
,”
J. Phys. A: Math. Thoer.
43
(
1
),
015204
(
2010
).
7.
K.
Bay
,
W.
Lay
, and
A.
Akopyan
, “
Avoided crossings of the quartic oscillator
,”
J. Phys. A: Math. Gen.
30
(
9
),
3057
3067
(
1997
).
8.
M.
Cao
,
Y.
Chen
, and
J.
Griffin
, “
Continuous and discrete Painlevé equations arising from the gap probability distribution of the finite n Gaussian unitary ensembles
,”
J. Stat. Phys.
157
(
2
),
363
375
(
2014
).
9.
M.
Chen
and
Y.
Chen
, “
Singular linear statistics of the Laguerre unitary ensemble and Painlevé III. Double scaling analysis
,”
J. Math. Phys.
56
(
6
),
063506
(
2015
).
10.
M.
Chen
,
Y.
Chen
, and
E. G.
Fan
, “
Perturbed Hankel determinant, correlation functions and Painlevé equations
,”
J. Math. Phys.
57
(
2
),
023501
(
2016
).
11.
Y.
Chen
and
D.
Dai
, “
Painlevé V and a Pollaczek-Jacobi type orthogonal polynomials
,”
J. Approximations Theory
162
(
12
),
2149
2167
(
2010
).
12.
Y.
Chen
and
M. E. H.
Ismail
, “
Thermodynamic relations of the Hermitian matrix ensembles
,”
J. Phys. A: Math. Gen.
30
(
19
),
6633
6654
(
1997
).
13.
Y.
Chen
and
M. E. H.
Ismail
, “
Ladder operators and differential equations for orthogonal polynomials
,”
J. Phys. A: Math. Gen.
30
(
22
),
7817
7829
(
1997
).
14.
Y.
Chen
and
M. E. H.
Ismail
, “
Jacobi polynomials from compatibility conditions
,”
Proc. Am. Math. Soc.
133
(
2
),
465
472
(
2005
).
15.
Y.
Chen
and
A.
Its
, “
Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I
,”
J. Approximations Theory
162
(
2
),
270
297
(
2010
).
16.
Y.
Chen
and
N.
Lawrence
, “
On the linear statistics of Hermitian random matrices
,”
J. Phys. A: Math. Gen.
31
(
4
),
1141
1152
(
1998
).
17.
Y.
Chen
and
M. R.
McKay
, “
Coulumb fluid, Painlevé transcendents, and the information theory of MIMO systems
,”
IEEE Trans. Inform. Theory
58
(
7
),
4594
4634
(
2012
).
18.
P. A.
Clarkson
and
K.
Jordaan
, “
Properties of generalized Freud polynomials
,”
J. Approximations Theory
225
,
148
175
(
2018
).
19.
A.
Debosscher
, “
Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes
,”
Phys. Rev. E
57
(
1
),
252
275
(
1998
).
20.
P.
Dorey
,
J.
Suzuki
, and
R.
Tateo
, “
Finite lattice Bethe ansatz systems and the Heun equation
,”
J. Phys. A: Math. Gen.
37
,
2047
2062
(
2004
).
21.
A.
Erdélyi
, “
Integral equations for Heun functions
,”
Q. J. Math.
os-13
,
107
112
(
1942
).
22.
A.
Erdélyi
, “
The Fuchsian equation of second order with four singularities
,”
Duke Math. J.
9
,
48
58
(
1942
).
23.
A.
Erdélyi
, “
Certain expansions of solutions of the Heun equation
,”
Q. J. Math.
os-15
,
62
69
(
1944
).
24.
F. D.
Gakhov
,
Boundary Value Problems
(
Dover Publications, Inc.
,
New York
,
1990
), Translated from the Russian, Reprint of the 1966 translation.
25.
R. R.
Hartmann
and
M. E.
Portnoi
, “
Two-dimensional Dirac particles in a Pöschl-Teller waveguide
,”
Sci. Rep.
7
,
11599
(
2017
).
26.
K.
Heun
, “
Zur theorie der Riemann’schen functionen zweiter ordnung mit vier verzweigungspunkten
,”
Math. Ann.
33
(
2
),
161
179
(
1888
) (German).
27.
M.
Hortaçsu
, “
Heun functions and their uses in physics
,” in
Proceedings of the 13th Regional Conference on Mathematical Physics
, edited by
U.
Camcl
and
I.
Semiz
(
World Scientific
,
Antalya, Turkey
,
2010
), pp.
27
31
; (
World Scientific
,
Singapore
,
2013
), p.
23
.
28.
M.
Hortaçsu
, “
Heun functions and some of their applications in physics
,”
2018
,
8621573
.
29.
E. L.
Ince
, “
A linear differential equation with periodic coefficients
,”
Proc. London Math. Soc.
s2
(
23
),
56
74
(
1925
).
30.
G. S.
Joyce
, “
On the simple cubic lattice Green function
,”
Philos. Trans. R. Soc., A
273
,
583
610
(
1973
).
31.
G. S.
Joyce
, “
On the cubic lattice Green functions
,”
Proc. R. Soc. A
445
,
463
477
(
1994
).
32.
E. G.
Kalnins
and
J. W.
Miller
, “
Hypergeometric expansions of Heun polynomials
,”
SIAM J. Math. Anal.
22
(
5
),
1450
1459
(
1991
).
33.
R. P.
Kerr
, “
Gravitational field of a spinning mass as an example of algebraically special metrics
,”
Phys. Rev. Lett.
11
(
5
),
237
238
(
1963
).
34.
A. B.
Kuijlaars
,
K. R.
McLaughlin
,
W.
Van Assche
, and
M.
Vanlessen
, “
The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [−1, 1]
,”
188
(
2
),
337
398
(
2004
).
35.
C.
Leroy
and
A.
Ishkhanyan
, “
Expansions of the solutions of the confluent Heun equation in terms of the incomplete Beta and the Appell generalized hypergeometric functions
,”
Integr. Transforms Spec. Funct.
26
(
6
),
451
459
(
2015
).
36.
W.
Lay
and
S. Yu.
Slavyanov
, “
Heun’s equation with nearby singularities
,”
Proc. R. Soc. A
455
,
4347
4361
(
1999
).
37.
S.
Lukyanov
, “
Finite temperature expectation values of local fields in the sinh-Gordon model
,”
Nucl. Phys. B
612
(
3
),
391
412
(
2001
).
38.
S. L.
Lyu
and
Y.
Chen
, “
The largest eigenvalue distribution of the Laguerre unitary ensemble
,”
Acta Math. Sci.
37
(
2
),
439
462
(
2017
).
39.
S. L.
Lyu
,
Y.
Chen
, and
E. G.
Fan
, “
Asymptotic gap probability distributions of the Gaussian unitary ensembles and Jacobi unitary ensembles
,”
Nucl. Phys. B
926
,
639
670
(
2018
).
40.
A. P.
Magnus
, “
Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials
,” in
Proceedings of the Fourth International Symposium on Orthogonal Polynomials and their Applications, Evian-Les-Bains
,
1992
A. P.
Magnus
, [
J. Comput. Appl. Math.
57
(
1-2
),
215
237
(
1995
)].
41.
A.
Malmendier
, “
The eigenvalue equation on the Eguchi-Hanson space
,”
J. Math. Phys.
44
,
4308
4343
(
2003
).
42.
A.
Matè
,
P.
Nevai
, and
V.
Totik
, “
Strong and weak convergence of orthogonal polynomials
,”
Am. J. Math.
109
,
239
282
(
1987
).
43.
C.
Min
and
Y.
Chen
, “
Gap probability distribution of the Jacobi unitary ensemble: An elementary treatment, from finite n to double scaling
,”
Stud. Appl. Math.
140
(
2
),
202
220
(
2018
).
44.
S. G.
Mikhlin
,
Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology
(
Perggomen Press
,
1964
).
45.
F. W. J.
Olver
,
A. B.
Olde Daalhuis
,
D. W.
Lozier
,
B. I.
Schneider
,
R. F.
Boisvert
,
C. W.
Clark
,
B. R.
Miller
, and
B. V.
Saunders
, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.22 of 15 March 2019.
46.
C. J.
Rees
, “
Elliptic orthogonal polynomials
,”
Duke Math. J.
12
,
173
187
(
1945
).
47.
A.
Ronveaux
,
Heun’s Differential Equations
(
Oxford Science Publications; The Clarendon Press; Oxford University Press
,
New York
,
1995
).
48.
D.
Schmidt
, “
Die lösung der linearen differentialgleichung 2. Ordnung um zwei einfache singularitäten durch reihen nach hypergeometrischen funktionen
,”
J. Reine Angew. Math.
309
,
127
148
(
1979
) (German), available at http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002196336.
49.
S. J.
Slavjanov
and
W.
Lay
,
Special Functions: A Unified Theory Based on Singularities
(
Oxford University Press
,
Oxford
,
2000
).
50.
B. D.
Sleeman
and
V. B.
Kuznetsov
, “
Heun functions
,” in
NIST Handbook of Mathematical Functions
(
U.S. Department of Commerce
,
Washington, DC
,
2010
), pp.
709
721
.
51.
G.
Szegö
,
Orthogonal Polynomials
, 4th ed. (
American Mathematical Society, Colloquium Publications; American Mathematical Society
,
Providence, RI
,
1975
), Vol. XXIII.
52.
H.
Suzuki
,
E.
Takasugi
, and
H.
Umetsu
, “
Perturbations of Kerr-de Sitter black hole and Heun’s equations
,”
Prog. Theor. Phys.
100
,
491
505
(
1998
); e-print arXiv:gr-qc/9805064.
53.
N.
Svartholm
, “
Die lösung der fuchsschen differentialgleichung zweiter ordnung durch hypergeometrische polynome
,”
Math. Ann.
116
(
1
),
413
421
(
1939
) (German).
54.
M.
Tsuji
,
Potential Theory in Modern Function Theory
(
Maruzen Co., Ltd.
,
Tokyo
,
1959
).
55.
L. J.
Zhan
,
G.
Blower
,
Y.
Chen
, and
M. K.
Zhu
, “
Center of mass distribution of the Jacobi unitary ensembles: Painlevé V, asymptotic expansions
,”
J. Math. Phys.
59
(
10
),
103301
(
2018
).
56.
M. K.
Zhu
and
Y.
Chen
, “
On properties of a deformed Freud weight
,”
Random Matrices Theory Appl.
8
(
1
),
1950004
(
2019
).