The quantum spectral curve equation associated with KP τ-functions of hypergeometric type serving as generating functions for rationally weighted Hurwitz numbers is solved by generalized hypergeometric series. The basis elements spanning the corresponding Sato Grassmannian element are shown to be Meijer G-functions, or their asymptotic series. Using their Mellin integral representation, the τ-function, evaluated at the trace invariants of an externally coupled matrix, is expressed as a matrix integral.
REFERENCES
1.
J.
Ambjørn
and L.
Chekhov
, “The matrix model for dessins d’enfants
,” Ann. Inst. Henri Poincaré D
1
, 337
–361
(2014
).2.
J.
Ambjørn
and L.
Chekhov
, “A matrix model for hypergeometric Hurwitz numbers
,” Theor. Math. Phys.
181
, 1486
–1498
(2014
).3.
J.
Ambjørn
and L.
Chekhov
, “Spectral curves for hypergeometric Hurwitz numbers
,” J. Geom. Phys.
132
, 382
–392
(2008
).4.
A.
Alexandrov
, G.
Chapuy
, B.
Eynard
, and J.
Harnad
, “Weighted Hurwitz numbers and topological recursion: An overview
,” J. Math. Phys.
59
, 081102
(2018
).5.
A.
Alexandrov
, G.
Chapuy
, B.
Eynard
, and J.
Harnad
, “Fermionic approach to weighted Hurwitz numbers and topological recursion
,” Commun. Math. Phys.
360
(2
), 777
(2018
).6.
A.
Alexandrov
, G.
Chapuy
, B.
Eynard
, and J.
Harnad
, “Weighted Hurwitz numbers and topological recursion
,” e-print arXiv:1806.09738.7.
A.
Alexandrov
, A.
Mironov
, A.
Morozov
, and S.
Natanzon
, “On KP-integrable Hurwitz functions
,” J. High Energy Phys.
2014
, 80
.8.
C.
Andréief
, “Note sur une relation pour les intégrales définies des produits des fonctions
,” Mém. Soc. Sci. Phys. Nat. Bordeaux
2
, 1
–14
(1883
).9.
H.
Bateman
and A.
Erdélyi
, “Definition of the G-function
,” in Higher Transcendental Functions
(McGraw-Hill
, New York
, 1953
), Vol. I (PDF), see Sec. 5.3, p. 206
.10.
G.
Borot
, B.
Eynard
, M.
Mulase
, and B.
Safnuk
, “A matrix model for simple Hurwitz numbers, and topological recursion
,” J. Geom. Phys.
61
, 522
–540
(2011
).11.
E.
Brézin
and S.
Hikami
, “Correlations of nearby levels induced by a random potential
,” Nucl. Phys. B
479
(3
), 697
–706
(1996
).12.
V.
Bouchard
and M.
Mariño
, “Hurwitz numbers, matrix models and enumerative geometry
,” Proc. Symp. Pure Math.
78
, 263
–283
(2008
).13.
B.
Eynard
, Counting surfaces: CRM Aisenstadt Chair Lectures
, Progress in Mathematical Physics Vol. 70 (Birkhauseser; Springer
, 2016
).14.
B.
Eynard
and N.
Orantin
, “Algebraic methods in random matrices and enumerative geometry,
” J. Phys. A
42
, 293001
(2009
).15.
B.
Eynard
and N.
Orantin
, “Topological recursion in enumerative geometry and random matrices
,” J. Phys. A: Math. Theor.
42
, 293001
(2009
).16.
G.
Frobenius
, Über die Charaktere der Symmetrischen Gruppe
(Sitzber. Akad. Wiss., Berlin,
1900
), pp. 516
–534
(Gesammelte Abhandlung III
, 148
–166
).17.
G.
Frobenius
, Über die Charakterische Einheiten der Symmetrischen Gruppe
, Gesammelte Abhandlung III Vol. 244–274 (Sitzber. Akad. Wiss., Berlin, 1903), pp. 328
–358
(Gesammelte Abhandlung III
, 244
–274
).18.
W.
Fulton
and J.
Harris
, Representation Theory
, Graduate Texts in Mathematics Vol. 129 (Springer-Verlag
, Berlin, Heidelberg, NY
, 1991
), Chap. 4 and Appendix A.19.
I. P.
Goulden
and D. M.
Jackson
, “The KP hierarchy, branched covers, and triangulations
,” Adv. Math.
219
, 932
–951
(2008
).20.
I. P.
Goulden
, M.
Guay-Paquet
, and J.
Novak
, “Monotone Hurwitz numbers and the HCIZ integral
,” Ann. Math. Blaise Pascal
21
, 71
–99
(2014
).21.
M.
Guay-Paquet
and J.
Harnad
, “2D Toda τ-functions as combinatorial generating functions
,” Lett. Math. Phys.
105
, 827
–852
(2015
).22.
M.
Guay-Paquet
and J.
Harnad
, “Generating functions for weighted Hurwitz numbers
,” J. Math. Phys.
58
, 083503
(2017
).23.
K. I.
Gross
, D.
St
, and P.
Richards
, “Total positivity, spherical series, and hypergeometric functions of matrix argument
,” J. Approx. Theory
59
(2
), 224
–246
(1989
).24.
J.
Harnad
, “Weighted Hurwitz numbers and hypergeometric τ-functions: An overview
,” Proc. Symp. Pure Math.
93
, 289
–333
(2016
).25.
J.
Harnad
, “Quantum Hurwitz numbers and MacDonald polynomials
,” J. Math. Phys.
57
, 113505
(2016
).26.
J.
Harnad
, “Multispecies weighted Hurwitz numbers
,” Symmetry, Integr. Geom: Methods Appl.
11
, 097
(2015
).27.
J.
Harnad
and F.
Balogh
, τ-Functions and Their Applications
, Mathematical Physics Monographs Series (Cambridge University Press
, 2019
), Chap. 5, Secs. 5.7 and 5.10.28.
Harish-Chandra
, “Differential operators on a semisimple Lie algebra
,” Am. J. Math.
79
, 87
–120
(1957
).29.
J.
Harnad
and A. Yu.
Orlov
, “Hypergeometric τ-functions, Hurwitz numbers and enumeration of paths
,” Commun. Math. Phys.
338
, 267
–284
(2015
).30.
A.
Hurwitz
, “Über Riemann’sche Fläsche mit gegebnise Verzweigungspunkten
,” Math. Ann.
39
, 1
–61
(1891
); Matematische Werke I, 321–384.31.
A.
Hurwitz
, “Über die Anzahl der Riemann’sche Fläsche mit gegebnise Verzweigungspunkten
,” Math. Ann.
55
, 53
–66
(1902
); Matematische Werke I, 42–505.32.
C.
Itzykson
and J.-B.
Zuber
“The planar approximation. II
,” J. Math. Phys.
21
, 411
–421
(1980
).33.
M.
Kazarian
and P.
Zograf
, “Virasoro constraints and topological recursion for Grothendieck’s dessin counting
,” Lett. Math. Phys.
105
, 1057
–1084
(2015
).34.
S. K.
Lando
and A. K.
Zvonkin
, Graphs on Surfaces and their Applications
, Encyclopaedia of Mathematical Sciences Vol. 141 (Springer-Verlag Berlin, Heidelberg, New York
, 2004
).35.
I. G.
Macdonald
, Symmetric Functions and Hall Polynomials
(Clarendon Press
, Oxford
, 1995
).36.
A.
Mironov
and A.
Morozov
, “Virasoro constraints for Kontsevich-Hurwitz partition function
,” J. High Energy Phys.
2009
(02
), 024
.37.
Handbook of Mathematical Functions
, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, edited by F. W. J.
Olver
, D. W.
Lozier
; R. F.
Boisvert
, and C. W.
Clark
(Cambridge University Press
, 2010
), ISBN: 978-0-521-19225-5.38.
A.
Okounkov
, “Toda equations for Hurwitz numbers
,” Math. Res. Lett.
7
, 447
–453
(2000
).39.
A.
Okounkov
and R.
Pandharipande
, “Gromov-Witten theory, Hurwitz theory and completed cycles
,” Ann. Math.
163
, 517
(2006
).40.
A. Yu.
Orlov
, “New solvable matrix integrals
,” Int. J. Mod. Phys.
19
(supp. 2
), 276
–293
(2004
).41.
A. Yu.
Orlov
and D. M.
Scherbin
, “Fermionic representation for basic hypergeometric functions related to Schur polynomials
,” Theor. Math. Phys.
137
, 1574
–1589
(2003
).42.
A. Yu.
Orlov
and D. M.
Scherbin
, “Hypergeometric solutions of soliton equations
,” Theor. Math. Phys.
128
, 906
–926
(2001
).43.
M.
Sato
, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds
,” RIMS, Kyoto Univ. Kokyuroku
439
, 30
–46
(1981
).44.
M.
Sato
and Y.
Sato
, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold
,” in Nonlinear PDE in Applied Science
, Proc. U. S.-Japan Seminar, Tokyo 1982 (Kinokuniya
, Tokyo
, 1983
), pp. 259
–271
.45.
I.
Schur
, Neue Begründung der Theorie der Gruppencharaktere
(Sitzber. Akad. Wiss.
, Berlin
, 1905
), pp. 406
–432
.46.
G.
Segal
and G.
Wilson
, “Loop groups and equations of KdV type
,” Publ. Math. l’IHÉS
61
, 5
–65
(1985
).47.
P.
Zograf
, “Enumeration of Grothendieck’s dessins and KP hierarchy
,” Int. Math Res. Not.
24
, 13533
–13544
(2015
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.