In this paper, the authors discuss various results on universality in numerical computation with random data, obtained by the authors and their collaborators—C. Pfrang, G. Menon, S. Olver, and S. Miller—at various stages over the last 6–7 years. This paper follows closely the plenary talk with the same title given by the first author at ICMP Montreal 2018. The reader wishing to follow more closely the evolution and development of the ideas in this paper is invited to consult Deift et al. in the arXiv 2012–2019.

1.
C. W.
Pfrang
,
P.
Deift
, and
G.
Menon
, preprint arXiv:1203.4635 (
2012
).
2.
P. A.
Deift
,
G.
Menon
,
S.
Olver
, and
T.
Trogdon
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
14973
(
2014
).
3.
S.
Olver
,
N. R.
Rao
, and
T.
Trogdon
,
Random Matrices: Theory Appl.
4
,
1550002
(
2015
).
4.
P.
Deift
and
T.
Trogdon
, preprint arXiv:1901.09007 (
2019
).
5.
Y.
Bakhtin
and
J.
Correll
,
J. Math. Psychol.
56
,
333
(
2012
).
6.
L.
Sagun
,
T.
Trogdon
, and
Y.
LeCun
,
Q. Appl. Math.
76
,
289
(
2017
).
7.
8.
B.
Ottino-Loffler
,
J. G.
Scott
, and
S. H.
Strogatz
,
eLife
6
,
e30212
(
2017
).
9.
P. E.
Sartwell
,
Am. J. Epidemiol.
51
,
310
(
1950
).
10.
M. W.
Goldblatt
,
Br. J. Indust. Med.
6
,
65
(
1949
).
11.
P.
Deift
and
T.
Trogdon
,
Commun. Pure Appl. Math.
71
,
505
(
2018
).
12.
P.
Deift
and
T.
Trogdon
,
SIAM J. Numer. Anal.
55
,
2835
(
2017
).
13.
P.
Deift
,
S. D.
Miller
, and
T.
Trogdon
, preprint arXiv:1905.08408 (
2019
).
You do not currently have access to this content.