We discuss the partition function point of view for chordal Schramm-Loewner evolutions and their relationship with correlation functions in conformal field theory. Both are closely related to crossing probabilities and interfaces in critical models in two-dimensional statistical mechanics. We gather and supplement previous results with different perspectives, point out remaining difficulties, and suggest directions for future studies.

1.
A.
Abdesselam
, “
A second-quantized Kolmogorov-Chentsov theorem
,” preprint arXiv:1604.05259 (
2016
).
2.
T.
Alberts
and
M. J.
Kozdron
, “
Intersection probabilities for a chordal SLE path and a semicircle
,”
Electron. Commun. Probab.
13
(
43
),
448
460
(
2008
).
3.
T.
Alberts
and
S.
Sheffield
, “
Hausdorff dimension of the SLE curve intersected with the real line
,”
Electron. J. Probab.
13
(
40
),
1166
1188
(
2008
).
4.
M.
Bauer
and
D.
Bernard
, “
Conformal field theories of stochastic Loewner evolutions
,”
Commun. Math. Phys.
239
(
3
),
493
521
(
2003
).
5.
M.
Bauer
and
D.
Bernard
, “
SLE, CFT and zig-zag probabilities
,” in
Proceedings of the Conference ‘Conformal Invariance and Random Spatial Processes’
,
Edinburgh
,
2003
.
6.
M.
Bauer
and
D.
Bernard
, “
SLE martingales and the Virasoro algebra
,”
Phys. Lett. B
557
(
3-4
),
309
316
(
2003
).
7.
M.
Bauer
and
D.
Bernard
, “
Conformal transformations and the SLE partition function martingale
,”
Ann. Henri Poincaré
5
(
2
),
289
326
(
2004
).
8.
M.
Bauer
,
D.
Bernard
, and
K.
Kytölä
, “
Multiple Schramm-Loewner evolutions and statistical mechanics martingales
,”
J. Stat. Phys.
120
(
5-6
),
1125
1163
(
2005
).
9.
M.
Bauer
,
P.
Di Francesco
,
C.
Itzykson
, and
J.-B.
Zuber
, “
Covariant differential equations and singular vectors in Virasoro representations
,”
Nucl. Phys. B
362
(
3
),
515
562
(
1991
).
10.
M.
Bauer
and
H.
Saleur
, “
On some relations between local height probabilities and conformal invariance
,”
Nucl. Phys. B
320
(
3
),
591
624
(
1989
).
11.
V.
Beffara
,
E.
Peltola
, and
H.
Wu
, “
On the uniqueness of global multiple SLEs
,” preprint arXiv:1801.07699 (
2018
).
12.
A. A.
Belavin
,
A. M.
Polyakov
, and
A. B.
Zamolodchikov
, “
Infinite conformal symmetry in two-dimensional quantum field theory
,”
Nucl. Phys. B
241
(
2
),
333
380
(
1984
).
13.
A. A.
Belavin
,
A. M.
Polyakov
, and
A. B.
Zamolodchikov
, “
Infinite conformal symmetry of critical fluctuations in two dimensions
,”
J. Stat. Phys.
34
(
5-6
),
763
774
(
1984
).
14.
D.
Beliaev
and
F.
Johansson-Viklund
, “
Some remarks on SLE bubbles and Schramm’s two-point observable
,”
Commun. Math. Phys.
320
(
2
),
379
394
(
2013
).
15.
S.
Benoist
and
C.
Hongler
, “
The scaling limit of critical Ising interfaces is CLE(3)
,”
Ann. Probab.
47
(
4
),
2049
2086
(
2019
).
16.
L.
Benoit
and
Y.
Saint-Aubin
, “
Degenerate conformal field theories and explicit expressions for some null vectors
,”
Phys. Lett. B
215
(
3
),
517
522
(
1988
).
17.
R. A.
Brandt
, “
Derivation of renormalized relativistic perturbation theory from finite local field equations
,”
Ann. Phys.
44
(
2
),
221
265
(
1967
).
18.
T. W.
Burkhardt
and
I.
Guim
, “
Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields
,”
Phys. Rev. B
47
(
21
),
14306
14311
(
1993
).
19.
T. W.
Burkhardt
and
T.
Xue
, “
Conformal invariance and critical systems with mixed boundary conditions
,”
Nucl. Phys. B
354
(
2-3
),
653
665
(
1991
).
20.
F.
Camia
,
C.
Garban
, and
C. M.
Newman
, “
Planar Ising magnetization field I. Uniqueness of the critical scaling limit
,”
Ann. Probab.
43
(
2
),
528
571
(
2015
).
21.
F.
Camia
and
C. M.
Newman
, “
Two-dimensional critical percolation: The full scaling limit
,”
Commun. Math. Phys.
268
(
1
),
1
38
(
2006
).
22.
F.
Camia
and
C. M.
Newman
, “
Critical percolation exploration path and SLE(6): A proof of convergence
,”
Probab. Theory Relat. Fields
139
(
3-4
),
473
519
(
2007
).
23.
J. L.
Cardy
, “
Conformal invariance and surface critical behavior
,”
Nucl. Phys. B
240
(
4
),
514
532
(
1984
).
24.
J. L.
Cardy
, “
Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories
,”
Nucl. Phys. B
275
,
200
218
(
1986
).
25.
J. L.
Cardy
, “
Boundary conditions, fusion rules and the Verlinde formula
,”
Nucl. Phys. B
324
(
3
),
581
596
(
1989
).
26.
J. L.
Cardy
, “
Critical percolation in finite geometries
,”
J. Phys. A
25
(
4
),
L201
L206
(
1992
).
27.
J. L.
Cardy
,
Scaling and Renormalization in Statistical Physics
, Volume 5 of Cambridge Lecture Notes in Physics (
Cambridge University Press
,
1996
).
28.
J. L.
Cardy
, “
Stochastic Loewner evolution and Dyson’s circular ensembles
,”
J. Phys. A: Math. Gen.
36
(
24
),
L379
L386
(
2003
).
29.
J. L.
Cardy
, “
SLE for theoretical physicists
,”
Ann. Phys.
318
(
1
),
81
118
(
2005
).
30.
J. L.
Cardy
,
B.
Doyon
, and
V. G.
Riva
, “
Identification of the stress-energy tensor through conformal restriction in SLE and related processes
,”
Commun. Math. Phys.
268
(
3
),
687
716
(
2006
).
31.
D.
Chelkak
,
H.
Duminil-Copin
,
C.
Hongler
,
A.
Kemppainen
, and
S.
Smirnov
, “
Convergence of Ising interfaces to Schramm’s SLE curves
,”
C. R. Acad. Sci. Paris Sér. I Math.
352
(
2
),
157
161
(
2014
).
32.
D.
Chelkak
,
C.
Hongler
, and
K.
Izyurov
, “
Conformal invariance of spin correlations in the planar Ising model
,”
Ann. Math.
181
(
3
),
1087
1138
(
2015
).
33.
D.
Chelkak
,
C.
Hongler
, and
K.
Izyurov
(unpublished).
34.
D.
Chelkak
and
S.
Smirnov
, “
Universality in the 2D Ising model and conformal invariance of fermionic observables
,”
Invent. Math.
189
(
3
),
515
580
(
2012
).
35.
M.
den Nijs
, “
Extended scaling relations for the magnetic critical exponents of the potts model
,”
Phys. Rev. B
27
,
1674
1679
(
1983
).
36.
P.
Di Francesco
,
P.
Mathieu
, and
D.
Sénéchal
,
Conformal Field Theory
, Graduate Texts in Contemporary Physics (
Springer-Verlag
,
New York
,
1997
).
37.
V. S.
Dotsenko
and
V. A.
Fateev
, “
Conformal algebra and multipoint correlation functions in 2d statistical models
,”
Nucl. Phys. B
240
(
3
),
312
348
(
1984
).
38.
V. S.
Dotsenko
and
V. A.
Fateev
, “
Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ≤ 1
,”
Nucl. Phys. B
251
,
691
734
(
1985
).
39.
B.
Doyon
, “
Random loops and conformal field theory
,” in
Proceedings of the XXV IUPAP International Conference on Statistical Physics, Seoul National University, 2003
[
J. Stat. Mech.
2014
,
P02015
].
40.
J.
Dubédat
, “
Euler integrals for commuting SLEs
,”
J. Stat. Phys.
123
(
6
),
1183
1218
(
2006
).
41.
J.
Dubédat
, “
Excursion decompositions for SLE and Watts’ crossing formula
,”
Probab. Theory Relat. Fields
134
(
3
),
453
488
(
2006
).
42.
J.
Dubédat
, “
Commutation relations for SLE
,”
Commun. Pure Appl. Math.
60
(
12
),
1792
1847
(
2007
).
43.
J.
Dubédat
, “
SLE and the free field: Partition functions and couplings
,”
J. Am. Math. Soc.
22
(
4
),
995
1054
(
2009
).
44.
J.
Dubédat
, “
SLE and Virasoro representations: Localization
,”
Commun. Math. Phys.
336
(
2
),
695
760
(
2015
).
45.
J.
Dubédat
, “
SLE and Virasoro representations: Fusion
,”
Commun. Math. Phys.
336
(
2
),
761
809
(
2015
).
46.
H.
Duminil-Copin
and
S.
Smirnov
, “
Conformal invariance of lattice models
,” in
Probability and Statistical Physics in Two and More Dimensions
, Clay Mathematics Proceedings (
American Mathematical Society
,
Providence, RI
,
2012
), Vol. 15, pp.
213
276
47.
B.
Duplantier
, “
Conformal fractal geometry and boundary quantum gravity
,” in
Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot
, Volume 72 of Proceedings of Symposia in Pure Mathematics, edited by
M. L.
Lapidus
and
M.
van Frankenhuysen
(
American Mathematical Society
,
Providence, RI
,
2004
), pp.
365
482
.
48.
B.
Duplantier
,
J.
Miller
, and
S.
Sheffield
, “
Liouville quantum gravity as a mating of trees
,” preprint arXiv:1409.7055 (
2014
).
49.
B.
Duplantier
and
H.
Saleur
, “
Exact surface and wedge exponents for polymers in two dimensions
,”
Phys. Rev. Lett.
57
(
25
),
3179
3182
(
1986
).
50.
B.
Duplantier
and
H.
Saleur
, “
Exact determination of the percolation hull exponent in two dimensions
,”
Phys. Rev. Lett.
58
,
2325
2328
(
1987
).
51.
B. L.
Feĭgin
and
D. B.
Fuchs
, “
Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra
,”
Funct. Anal. Appl.
16
(
2
),
114
126
(
1982
).
52.
B. L.
Feĭgin
and
D. B.
Fuchs
, “
Verma modules over the Virasoro algebra
,” in
Topology (Leningrad 1982)
, Volume 1060 of Lecture Notes in Mathematics (
Berlin Heidelberg; Springer-Verlag
,
1984
), pp.
230
245
.
53.
B. L.
Feĭgin
and
D. B.
Fuchs
, “
Representations of the Virasoro algebra
,” in
Representation of Lie Groups and Related Topics
, Volume 7 of Advanced Studies in Contemporary Mathematics (
Gordon & Breach
,
New York
,
1990
), pp.
465
554
.
54.
S. M.
Flores
and
P.
Kleban
, “
A solution space for a system of null-state partial differential equations: Part 1
,”
Commun. Math. Phys.
333
(
1
),
389
434
(
2015
).
55.
S. M.
Flores
and
P.
Kleban
, “
A solution space for a system of null-state partial differential equations: Part 2
,”
Commun. Math. Phys.
333
(
1
),
435
481
(
2015
).
56.
S. M.
Flores
and
P.
Kleban
, “
A solution space for a system of null-state partial differential equations: Part 3
,”
Commun. Math. Phys.
333
(
2
),
597
667
(
2015
).
57.
S. M.
Flores
and
P.
Kleban
, “
A solution space for a system of null-state partial differential equations: Part 4
,”
Commun. Math. Phys.
333
(
2
),
669
715
(
2015
).
58.
S. M.
Flores
and
E.
Peltola
, “
Monodromy invariant CFT correlation functions of first column Kac operators
” (unpublished).
59.
S. M.
Flores
,
J. J. H.
Simmons
, and
P.
Kleban
, “
Multiple-SLEκ connectivity weights for rectangles, hexagons, and octagons
,” preprint arXiv:1505.07756 (
2015
).
60.
S. M.
Flores
,
J. J. H.
Simmons
,
P.
Kleban
, and
R. M.
Ziff
, “
A formula for crossing probabilities of critical systems inside polygons
,”
J. Phys. A: Math. Theor.
50
(
6
),
064005
(
2017
).
61.
I. B.
Frenkel
,
Y.-Z.
Huang
, and
J.
Lepowsky
, “
On axiomatic approaches to vertex operator algebras and modules
,”
Mem. Am. Math. Soc.
104
(
494
),
1
64
(
1993
).
62.
S.
Friedli
and
Y.
Velenik
,
Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
(
Cambridge University Press
,
2017
).
63.
R.
Friedrich
and
J.
Kalkkinen
, “
On conformal field theory and stochastic Loewner evolution
,”
Nucl. Phys. B
687
(
3
),
279
302
(
2004
).
64.
R.
Friedrich
and
W.
Werner
, “
Conformal restriction, highest weight representations and SLE
,”
Commun. Math. Phys.
243
(
1
),
105
122
(
2003
).
65.
J.-F.
Le Gall
, “
Uniqueness and universality of the Brownian map
,”
Ann. Probab.
41
(
4
),
2880
2960
(
2013
).
66.
A.
Gamsa
and
J. L.
Cardy
, “
The scaling limit of two cluster boundaries in critical lattice models
,”
J. Stat. Mech. Theory Exp.
2005
(
12
),
P12009
.
67.
A.
Giuliani
,
R. L.
Greenblatt
, and
V.
Mastropietro
, “
The scaling limit of the energy correlations in non integrable Ising models
,”
J. Math. Phys.
53
(
9
),
095214
(
2012
).
68.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics: A Functional Integral Point of View
(
Springer-Verlag
,
1987
).
69.
K.
Graham
, “
On multiple Schramm-Loewner evolutions
,”
J. Stat. Mech. Theory Exp.
2007
,
P03008
.
70.
M.
Hairer
, “
A theory of regularity structures
,”
Invent. Math.
198
(
2
),
269
504
(
2014
).
71.
C.
Hongler
and
C.
Garban
, personal communication (
December 2018
). See also the talk “Quantum field theory and SPDEs under the light of near-criticality and noise sensitivity,” http://www.newton.ac.uk/seminar/20181210143015301.
72.
C.
Hongler
and
K.
Kytölä
, “
Ising interfaces and free boundary conditions
,”
J. Am. Math. Soc.
26
(
4
),
1107
1189
(
2013
).
73.
C.
Hongler
and
S.
Smirnov
, “
The energy density in the planar Ising model
,”
Acta Math.
211
(
2
),
191
225
(
2013
).
74.
Y.-Z.
Huang
.
Two-Dimensional Conformal Geometry and Vertex Operator Algebras
, Volume 148 of Progress in Mathematics (
Birkhäuser Basel
,
1997
).
75.
K.
Iohara
and
Y.
Koga
,
Representation Theory of the Virasoro Algebra
, Springer Monographs in Mathematics (
Springer-Verlag
,
London
,
2011
).
76.
K.
Izyurov
, “
Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities
,”
Commun. Math. Phys.
337
(
1
),
225
252
(
2015
).
77.
K.
Izyurov
, “
Critical Ising interfaces in multiply-connected domains
,”
Probab. Theory Relat. Fields
167
(
1-2
),
379
415
(
2017
).
78.
M.
Jahangoshahi
and
G. F.
Lawler
, “
On the smoothness of the partition function for multiple Schramm-Loewner evolutions
,”
J. Stat. Phys.
173
(
5
),
1353
1368
(
2018
).
79.
N.
Jokela
,
M.
Järvinen
, and
K.
Kytölä
, “
SLE boundary visits
,”
Ann. Henri Poincaré
17
(
6
),
1263
1330
(
2016
).
80.
V. G.
Kac
, “
Contravariant form for the infinite-dimensional Lie algebras and superalgebras
,” in
Lecture Notes in Physics
(
Springer-Verlag
,
Berlin
,
1979
), Vol. 94, pp.
441
445
.
81.
V. G.
Kac
, “
Highest weight representations of infinite dimensional Lie algebras
,” in
Proceedings of the International Congress of Mathematicians, Helsinki, 1978
(
Academia Scientiarum Fennica
,
1980
), pp.
299
304
.
82.
V. G.
Kac
,
Vertex Algebras for Beginners
, Volume 10 of University Lecture Series, 2nd ed. (
American Mathematical Society
,
1998
).
83.
N.-G.
Kang
and
N. G.
Makarov
, , Asterisque Vol. 353 (
Société Mathématique de France
,
2013
).
84.
A.
Karrila
, “
Limits of conformal images and conformal images of limits for planar random curves
,” preprint arXiv:1810.05608 (
2018
).
85.
A.
Karrila
, “
Multiple SLE type scaling limits: From local to global
,” preprint arXiv:1903.10354 (
2019
).
86.
A.
Karrila
,
K.
Kytölä
, and
E.
Peltola
, “
Boundary correlations in planar LERW and UST
,”
Commun. Math. Phys.
(to be published); preprint arXiv:1702.03261 (
2017
).
87.
A.
Kemppainen
,
Schramm-Loewner Evolution
, SpringerBriefs in Mathematical Physics (
Springer International Publishing
,
2017
).
88.
A.
Kemppainen
and
S.
Smirnov
, “
Random curves, scaling limits and Loewner evolutions
,”
Ann. Probab.
45
(
2
),
698
779
(
2017
); e-print arXiv:1212.6215.
89.
R. W.
Kenyon
, “
The asymptotic determinant of the discrete Laplacian
,”
Acta Math.
185
(
2
),
239
286
(
2000
).
90.
R. W.
Kenyon
, “
Conformal invariance of domino tiling
,”
Ann. Probab.
28
(
2
),
759
795
(
2000
).
91.
R. W.
Kenyon
, “
Dominos and the Gaussian free field
,”
Ann. Probab.
29
(
3
),
1128
1137
(
2001
).
92.
M.
Kontsevich
, “
CFT, SLE, and phase boundaries
,” in
Oberwolfach Arbeitstagung
,
2003
.
93.
M.
Kontsevich
and
Y.
Suhov
, “
On Malliavin measures, SLE, and CFT
,”
Proc. Steklov Inst. Math.
258
(
1
),
100
146
(
2007
).
94.
M. J.
Kozdron
and
G. F.
Lawler
, “
The configurational measure on mutually avoiding SLE paths
,”
Fields Inst. Commun.
50
,
199
224
(
2007
).
95.
K.
Kytölä
, “
On conformal field theory of SLE(κ, ρ)
,”
J. Stat. Phys.
123
(
6
),
1169
1181
(
2006
).
96.
K.
Kytölä
and
E.
Peltola
, “
Pure partition functions of multiple SLEs
,”
Commun. Math. Phys.
346
(
1
),
237
292
(
2016
).
97.
K.
Kytölä
and
E.
Peltola
, “
Conformally covariant boundary correlation functions with a quantum group
,”
J. Eur. Math. Soc.
(published online); e-print arXiv:1408.1384.
98.
R. P.
Langlands
,
M.-A.
Lewis
, and
Y.
Saint-Aubin
, “
Universality and conformal invariance for the Ising model in domains with boundary
,”
J. Stat. Phys.
98
(
1-2
),
131
244
(
2000
).
99.
R. P.
Langlands
,
P.
Pouliot
, and
Y.
Saint-Aubin
, “
Conformal invariance in 2D percolation
,”
Bull. Am. Math. Soc.
30
,
1
61
(
1994
).
100.
G. F.
Lawler
,
Conformally Invariant Processes in the Plane
, Volume 114 of Mathematical Surveys and Monographs (
American Mathematical Society
,
2005
).
101.
G. F.
Lawler
, “
Schramm-Loewner evolution
,” in
Statistical Mechanics
, IAS/Park City Mathematical Series (
American Mathematical Society
,
2009
), pp.
231
295
.
102.
G. F.
Lawler
, “
Partition functions, loop measure, and versions of SLE
,”
J. Stat. Phys.
134
(
5-6
),
813
837
(
2009
).
103.
G. F.
Lawler
,
O.
Schramm
, and
W.
Werner
, “
Values of Brownian intersection exponents I: Half-plane exponents
,”
Acta Math.
187
(
2
),
237
273
(
2001
).
104.
G. F.
Lawler
,
O.
Schramm
, and
W.
Werner
, “
Values of Brownian intersection exponents II: Plane exponents
,”
Acta Math.
187
(
2
),
275
308
(
2001
).
105.
G. F.
Lawler
,
O.
Schramm
, and
W.
Werner
, “
One-arm exponent for 2D critical percolation
,”
Electron. J. Probab.
7
(
2
),
1
13
(
2002
).
106.
G. F.
Lawler
,
O.
Schramm
, and
W.
Werner
, “
Conformal restriction: The chordal case
,”
J. Am. Math. Soc.
16
(
4
),
917
955
(
2003
).
107.
G. F.
Lawler
,
O.
Schramm
, and
W.
Werner
, “
Conformal invariance of planar loop-erased random walks and uniform spanning trees
,”
Ann. Probab.
32
(
1B
),
939
995
(
2004
).
108.
J.
Lenells
and
F.
Viklund
, “
Schramm’s formula and the Green’s function for multiple SLE
,”
J. Stat. Phys.
176
(
4
),
873
931
(
2019
).
109.
C.
Loewner
, “
Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I
,”
Math. Ann.
89
,
103
121
(
1923
).
110.
T. J.
Lyons
, “
Differential equations driven by rough signals
,”
Rev. Mat. Iberoam.
14
(
2
),
215
310
(
1998
).
111.
B. M.
McCoy
and
T. T.
Wu
,
The Two-Dimensional Ising Model
(
Harvard University Press
,
1973
).
112.
G.
Miermont
, “
The Brownian map is the scaling limit of uniform random plane quadrangulations
,”
Acta Math.
210
(
2
),
319
401
(
2013
).
113.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry I: Interacting SLEs
,”
Probab. Theory Relat. Fields
164
(
3-4
),
553
705
(
2016
).
114.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry II: Reversibility of SLEκ1, ρ2) for κ ∈ (0, 4)
,”
Ann. Probab.
44
(
3
),
1647
1722
(
2016
).
115.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry III: Reversibility of SLEκ for κ ∈ (4, 8)
,”
Ann. Math.
184
(
2
),
455
486
(
2016
).
116.
J.
Miller
and
W.
Werner
, “
Connection probabilities for conformal loop ensembles
,”
Commun. Math. Phys.
362
(
2
),
415
453
(
2018
).
117.
G.
Mussardo
,
Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics
, Oxford Graduate Texts (
Oxford University Press
,
2010
).
118.
B.
Nienhuis
, “
Exact critical point and exponents of the O(n) model in two dimensions
,”
Phys. Rev. Lett.
49
,
1062
1065
(
1982
).
119.
B.
Nienhuis
, “
Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas
,”
J. Stat. Phys.
34
(
5
),
731
761
(
1984
).
120.
B.
Nienhuis
, “
Coulomb gas formulation of two-dimensional phase transitions
,” in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic Press
,
London
,
1987
), Vol. 11, pp.
1
53
.
121.
E.
Peltola
, “
Basis for solutions of the Benoit and Saint-Aubin PDEs with particular asymptotics properties
,”
Ann. Inst. Henri Poincaré D
(to be published); e-print arXiv:1605.06053.
122.
E.
Peltola
and
H.
Wu
, “
Crossing probabilities of multiple Ising interfaces
,” preprint arXiv:1808.09438 (
2018
).
123.
E.
Peltola
and
H.
Wu
, “
Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF
,”
Commun. Math. Phys.
366
(
2
),
469
536
(
2019
).
124.
J.
Polchinski
, “
Scale and conformal invariance in quantum field theory
,”
Nucl. Phys. B
303
(
2
),
226
236
(
1988
).
125.
A. M.
Polyakov
, “
Conformal symmetry of critical fluctuations
,”
JETP Lett.
12
(
12
),
381
383
(
1970
).
126.
A. M.
Polyakov
, “
Non-Hamiltonian approach to conformal quantum field theory
,”
Z. Eksp. Teor. Fiz.
66
,
23
42
(
1974
).
127.
A. M.
Polyakov
, “
Quantum geometry of bosonic strings
,”
Phys. Lett. B
103
(
3
),
207
210
(
1981
).
128.
S.
Rohde
and
O.
Schramm
, “
Basic properties of SLE
,”
Ann. Math.
161
(
2
),
883
924
(
2005
).
129.
M.
Schottenloher
,
A Mathematical Introduction to Conformal Field Theory
, Volume 759 of Lecture Notes in Physics, 2nd ed. (
Springer-Verlag
,
Berlin Heidelberg
,
2008
).
130.
O.
Schramm
, “
Scaling limits of loop-erased random walks and uniform spanning trees
,”
Isr. J. Math.
118
(
1
),
221
288
(
2000
).
131.
O.
Schramm
, “
Conformally invariant scaling limits, an overview and a collection of problems
,” in
Proceedings of ICM 2006, Madrid, Spain
(
European Mathematical Society
,
2006
), pp.
513
543
.
132.
O.
Schramm
and
S.
Sheffield
, “
Contour lines of the two-dimensional discrete Gaussian free field
,”
Acta Math.
202
(
1
),
21
137
(
2009
).
133.
O.
Schramm
and
S.
Sheffield
, “
A contour line of the continuum Gaussian free field
,”
Probab. Theory Relat. Fields
157
(
1
),
47
80
(
2013
).
134.
S.
Sheffield
, “
Gaussian free field for mathematicians
,”
Probab. Theory Relat. Fields
139
(
3
),
521
541
(
2007
).
135.
S.
Sheffield
, “
Exploration trees and conformal loop ensembles
,”
Duke Math. J.
147
(
1
),
79
129
(
2009
).
136.
S.
Sheffield
and
D. B.
Wilson
, “
Schramm’s proof of Watts’ formula
,”
Ann. Probab.
39
(
5
),
1844
1863
(
2011
).
137.
S.
Sheffield
and
W.
Werner
, “
Conformal loop ensembles: The Markovian characterization and the loop-soup construction
,”
Ann. Math.
176
(
3
),
1827
1917
(
2012
).
138.
S.
Smirnov
, “
Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits
,”
C. R. Acad. Sci.
333
(
3
),
239
244
(
2001
); Updated on 2009, see e-print arXiv:0909.4499.
139.
S.
Smirnov
, “
Towards conformal invariance of 2D lattice models
,” in
Proceedings of ICM 2006, Madrid, Spain
(
European Mathematical Society
,
2006
), Vol. II, pp.
1421
1451
.
140.
S.
Smirnov
, “
Conformal invariance in random cluster models I. Holomorphic fermions in the Ising model
,”
Ann. Math.
172
(
2
),
1435
1467
(
2010
).
141.
S.
Smirnov
and
W.
Werner
, “
Critical exponents for two-dimensional percolation
,”
Math. Res. Lett.
8
(
6
),
729
744
(
2001
).
142.
B.
Virag
, “
Brownian beads
,”
Probab. Theory Relat. Fields
127
(
3
),
367
387
(
2003
).
143.
G.
Watts
, “
A crossing probability for critical percolation in two dimensions
,”
J. Phys. A: Math. Gen.
29
,
L363
(
1996
).
144.
K.
Wilson
, “
Non-Lagrangian models of current algebra
,”
Phys. Rev.
179
(
5
),
1499
1512
(
1969
).
145.
K.
Wilson
and
W.
Zimmermann
, “
Operator product expansions and composite field operators in the general framework of quantum field theory
,”
Commun. Math. Phys.
24
(
2
),
87
106
(
1972
).
146.
E.
Witten
, “
Perturbative quantum field theory
,” in
Quantum Fields and Strings: A Course for Mathematicians, Volume 1
, edited by
P.
Deligne
,
P.
Etingof
,
D. S.
Freed
,
L. C.
Jeffrey
,
D.
Kazhdan
,
J. W.
Morgan
,
D. R.
Morrison
, and
E.
Witten
(
American Mathematical Society
,
Providence, RI
;
Institute for Advanced Study (IAS)
,
Princeton, NJ; Providence, RI
,
1999
).
147.
H.
Wu
, “
Hypergeometric SLE: Conformal Markov characterization and applications
,” preprint arXiv:1703.02022 (
2017
).
148.
D.
Zhan
, “
Reversibility of chordal SLE
,”
Ann. Probab.
36
(
4
),
1472
1494
(
2008
).
149.
D.
Zhan
, “
The scaling limits of planar LERW in finitely connected domains
,”
Ann. Probab.
36
(
2
),
467
529
(
2008
).
150.
Y.
Zhu
, “
Modular invariance of characters of vertex operator algebras
,”
J. Am. Math. Soc.
9
(
1
),
237
307
(
1996
).
You do not currently have access to this content.