We discuss the partition function point of view for chordal Schramm-Loewner evolutions and their relationship with correlation functions in conformal field theory. Both are closely related to crossing probabilities and interfaces in critical models in two-dimensional statistical mechanics. We gather and supplement previous results with different perspectives, point out remaining difficulties, and suggest directions for future studies.
REFERENCES
1.
2.
T.
Alberts
and M. J.
Kozdron
, “Intersection probabilities for a chordal SLE path and a semicircle
,” Electron. Commun. Probab.
13
(43
), 448
–460
(2008
).3.
T.
Alberts
and S.
Sheffield
, “Hausdorff dimension of the SLE curve intersected with the real line
,” Electron. J. Probab.
13
(40
), 1166
–1188
(2008
).4.
M.
Bauer
and D.
Bernard
, “Conformal field theories of stochastic Loewner evolutions
,” Commun. Math. Phys.
239
(3
), 493
–521
(2003
).5.
M.
Bauer
and D.
Bernard
, “SLE, CFT and zig-zag probabilities
,” in Proceedings of the Conference ‘Conformal Invariance and Random Spatial Processes’
, Edinburgh
, 2003
.6.
M.
Bauer
and D.
Bernard
, “SLE martingales and the Virasoro algebra
,” Phys. Lett. B
557
(3-4
), 309
–316
(2003
).7.
M.
Bauer
and D.
Bernard
, “Conformal transformations and the SLE partition function martingale
,” Ann. Henri Poincaré
5
(2
), 289
–326
(2004
).8.
M.
Bauer
, D.
Bernard
, and K.
Kytölä
, “Multiple Schramm-Loewner evolutions and statistical mechanics martingales
,” J. Stat. Phys.
120
(5-6
), 1125
–1163
(2005
).9.
M.
Bauer
, P.
Di Francesco
, C.
Itzykson
, and J.-B.
Zuber
, “Covariant differential equations and singular vectors in Virasoro representations
,” Nucl. Phys. B
362
(3
), 515
–562
(1991
).10.
M.
Bauer
and H.
Saleur
, “On some relations between local height probabilities and conformal invariance
,” Nucl. Phys. B
320
(3
), 591
–624
(1989
).11.
V.
Beffara
, E.
Peltola
, and H.
Wu
, “On the uniqueness of global multiple SLEs
,” preprint arXiv:1801.07699 (2018
).12.
A. A.
Belavin
, A. M.
Polyakov
, and A. B.
Zamolodchikov
, “Infinite conformal symmetry in two-dimensional quantum field theory
,” Nucl. Phys. B
241
(2
), 333
–380
(1984
).13.
A. A.
Belavin
, A. M.
Polyakov
, and A. B.
Zamolodchikov
, “Infinite conformal symmetry of critical fluctuations in two dimensions
,” J. Stat. Phys.
34
(5-6
), 763
–774
(1984
).14.
D.
Beliaev
and F.
Johansson-Viklund
, “Some remarks on SLE bubbles and Schramm’s two-point observable
,” Commun. Math. Phys.
320
(2
), 379
–394
(2013
).15.
S.
Benoist
and C.
Hongler
, “The scaling limit of critical Ising interfaces is CLE(3)
,” Ann. Probab.
47
(4
), 2049
–2086
(2019
).16.
L.
Benoit
and Y.
Saint-Aubin
, “Degenerate conformal field theories and explicit expressions for some null vectors
,” Phys. Lett. B
215
(3
), 517
–522
(1988
).17.
R. A.
Brandt
, “Derivation of renormalized relativistic perturbation theory from finite local field equations
,” Ann. Phys.
44
(2
), 221
–265
(1967
).18.
T. W.
Burkhardt
and I.
Guim
, “Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordered boundary fields
,” Phys. Rev. B
47
(21
), 14306
–14311
(1993
).19.
T. W.
Burkhardt
and T.
Xue
, “Conformal invariance and critical systems with mixed boundary conditions
,” Nucl. Phys. B
354
(2-3
), 653
–665
(1991
).20.
F.
Camia
, C.
Garban
, and C. M.
Newman
, “Planar Ising magnetization field I. Uniqueness of the critical scaling limit
,” Ann. Probab.
43
(2
), 528
–571
(2015
).21.
F.
Camia
and C. M.
Newman
, “Two-dimensional critical percolation: The full scaling limit
,” Commun. Math. Phys.
268
(1
), 1
–38
(2006
).22.
F.
Camia
and C. M.
Newman
, “Critical percolation exploration path and SLE(6): A proof of convergence
,” Probab. Theory Relat. Fields
139
(3-4
), 473
–519
(2007
).23.
J. L.
Cardy
, “Conformal invariance and surface critical behavior
,” Nucl. Phys. B
240
(4
), 514
–532
(1984
).24.
J. L.
Cardy
, “Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories
,” Nucl. Phys. B
275
, 200
–218
(1986
).25.
J. L.
Cardy
, “Boundary conditions, fusion rules and the Verlinde formula
,” Nucl. Phys. B
324
(3
), 581
–596
(1989
).26.
J. L.
Cardy
, “Critical percolation in finite geometries
,” J. Phys. A
25
(4
), L201
–L206
(1992
).27.
J. L.
Cardy
, Scaling and Renormalization in Statistical Physics
, Volume 5 of Cambridge Lecture Notes in Physics (Cambridge University Press
, 1996
).28.
J. L.
Cardy
, “Stochastic Loewner evolution and Dyson’s circular ensembles
,” J. Phys. A: Math. Gen.
36
(24
), L379
–L386
(2003
).29.
J. L.
Cardy
, “SLE for theoretical physicists
,” Ann. Phys.
318
(1
), 81
–118
(2005
).30.
J. L.
Cardy
, B.
Doyon
, and V. G.
Riva
, “Identification of the stress-energy tensor through conformal restriction in SLE and related processes
,” Commun. Math. Phys.
268
(3
), 687
–716
(2006
).31.
D.
Chelkak
, H.
Duminil-Copin
, C.
Hongler
, A.
Kemppainen
, and S.
Smirnov
, “Convergence of Ising interfaces to Schramm’s SLE curves
,” C. R. Acad. Sci. Paris Sér. I Math.
352
(2
), 157
–161
(2014
).32.
D.
Chelkak
, C.
Hongler
, and K.
Izyurov
, “Conformal invariance of spin correlations in the planar Ising model
,” Ann. Math.
181
(3
), 1087
–1138
(2015
).33.
D.
Chelkak
, C.
Hongler
, and K.
Izyurov
(unpublished).34.
D.
Chelkak
and S.
Smirnov
, “Universality in the 2D Ising model and conformal invariance of fermionic observables
,” Invent. Math.
189
(3
), 515
–580
(2012
).35.
M.
den Nijs
, “Extended scaling relations for the magnetic critical exponents of the potts model
,” Phys. Rev. B
27
, 1674
–1679
(1983
).36.
P.
Di Francesco
, P.
Mathieu
, and D.
Sénéchal
, Conformal Field Theory
, Graduate Texts in Contemporary Physics (Springer-Verlag
, New York
, 1997
).37.
V. S.
Dotsenko
and V. A.
Fateev
, “Conformal algebra and multipoint correlation functions in 2d statistical models
,” Nucl. Phys. B
240
(3
), 312
–348
(1984
).38.
V. S.
Dotsenko
and V. A.
Fateev
, “Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ≤ 1
,” Nucl. Phys. B
251
, 691
–734
(1985
).39.
B.
Doyon
, “Random loops and conformal field theory
,” in Proceedings of the XXV IUPAP International Conference on Statistical Physics, Seoul National University, 2003
[J. Stat. Mech.
2014
, P02015
].40.
J.
Dubédat
, “Euler integrals for commuting SLEs
,” J. Stat. Phys.
123
(6
), 1183
–1218
(2006
).41.
J.
Dubédat
, “Excursion decompositions for SLE and Watts’ crossing formula
,” Probab. Theory Relat. Fields
134
(3
), 453
–488
(2006
).42.
J.
Dubédat
, “Commutation relations for SLE
,” Commun. Pure Appl. Math.
60
(12
), 1792
–1847
(2007
).43.
J.
Dubédat
, “SLE and the free field: Partition functions and couplings
,” J. Am. Math. Soc.
22
(4
), 995
–1054
(2009
).44.
J.
Dubédat
, “SLE and Virasoro representations: Localization
,” Commun. Math. Phys.
336
(2
), 695
–760
(2015
).45.
J.
Dubédat
, “SLE and Virasoro representations: Fusion
,” Commun. Math. Phys.
336
(2
), 761
–809
(2015
).46.
H.
Duminil-Copin
and S.
Smirnov
, “Conformal invariance of lattice models
,” in Probability and Statistical Physics in Two and More Dimensions
, Clay Mathematics Proceedings (American Mathematical Society
, Providence, RI
, 2012
), Vol. 15, pp. 213
–276
47.
B.
Duplantier
, “Conformal fractal geometry and boundary quantum gravity
,” in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot
, Volume 72 of Proceedings of Symposia in Pure Mathematics, edited by M. L.
Lapidus
and M.
van Frankenhuysen
(American Mathematical Society
, Providence, RI
, 2004
), pp. 365
–482
.48.
B.
Duplantier
, J.
Miller
, and S.
Sheffield
, “Liouville quantum gravity as a mating of trees
,” preprint arXiv:1409.7055 (2014
).49.
B.
Duplantier
and H.
Saleur
, “Exact surface and wedge exponents for polymers in two dimensions
,” Phys. Rev. Lett.
57
(25
), 3179
–3182
(1986
).50.
B.
Duplantier
and H.
Saleur
, “Exact determination of the percolation hull exponent in two dimensions
,” Phys. Rev. Lett.
58
, 2325
–2328
(1987
).51.
B. L.
Feĭgin
and D. B.
Fuchs
, “Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra
,” Funct. Anal. Appl.
16
(2
), 114
–126
(1982
).52.
B. L.
Feĭgin
and D. B.
Fuchs
, “Verma modules over the Virasoro algebra
,” in Topology (Leningrad 1982)
, Volume 1060 of Lecture Notes in Mathematics (Berlin Heidelberg; Springer-Verlag
, 1984
), pp. 230
–245
.53.
B. L.
Feĭgin
and D. B.
Fuchs
, “Representations of the Virasoro algebra
,” in Representation of Lie Groups and Related Topics
, Volume 7 of Advanced Studies in Contemporary Mathematics (Gordon & Breach
, New York
, 1990
), pp. 465
–554
.54.
S. M.
Flores
and P.
Kleban
, “A solution space for a system of null-state partial differential equations: Part 1
,” Commun. Math. Phys.
333
(1
), 389
–434
(2015
).55.
S. M.
Flores
and P.
Kleban
, “A solution space for a system of null-state partial differential equations: Part 2
,” Commun. Math. Phys.
333
(1
), 435
–481
(2015
).56.
S. M.
Flores
and P.
Kleban
, “A solution space for a system of null-state partial differential equations: Part 3
,” Commun. Math. Phys.
333
(2
), 597
–667
(2015
).57.
S. M.
Flores
and P.
Kleban
, “A solution space for a system of null-state partial differential equations: Part 4
,” Commun. Math. Phys.
333
(2
), 669
–715
(2015
).58.
S. M.
Flores
and E.
Peltola
, “Monodromy invariant CFT correlation functions of first column Kac operators
” (unpublished).59.
S. M.
Flores
, J. J. H.
Simmons
, and P.
Kleban
, “Multiple-SLEκ connectivity weights for rectangles, hexagons, and octagons
,” preprint arXiv:1505.07756 (2015
).60.
S. M.
Flores
, J. J. H.
Simmons
, P.
Kleban
, and R. M.
Ziff
, “A formula for crossing probabilities of critical systems inside polygons
,” J. Phys. A: Math. Theor.
50
(6
), 064005
(2017
).61.
I. B.
Frenkel
, Y.-Z.
Huang
, and J.
Lepowsky
, “On axiomatic approaches to vertex operator algebras and modules
,” Mem. Am. Math. Soc.
104
(494
), 1
–64
(1993
).62.
S.
Friedli
and Y.
Velenik
, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
(Cambridge University Press
, 2017
).63.
R.
Friedrich
and J.
Kalkkinen
, “On conformal field theory and stochastic Loewner evolution
,” Nucl. Phys. B
687
(3
), 279
–302
(2004
).64.
R.
Friedrich
and W.
Werner
, “Conformal restriction, highest weight representations and SLE
,” Commun. Math. Phys.
243
(1
), 105
–122
(2003
).65.
J.-F.
Le Gall
, “Uniqueness and universality of the Brownian map
,” Ann. Probab.
41
(4
), 2880
–2960
(2013
).66.
A.
Gamsa
and J. L.
Cardy
, “The scaling limit of two cluster boundaries in critical lattice models
,” J. Stat. Mech. Theory Exp.
2005
(12
), P12009
.67.
A.
Giuliani
, R. L.
Greenblatt
, and V.
Mastropietro
, “The scaling limit of the energy correlations in non integrable Ising models
,” J. Math. Phys.
53
(9
), 095214
(2012
).68.
J.
Glimm
and A.
Jaffe
, Quantum Physics: A Functional Integral Point of View
(Springer-Verlag
, 1987
).69.
K.
Graham
, “On multiple Schramm-Loewner evolutions
,” J. Stat. Mech. Theory Exp.
2007
, P03008
.70.
M.
Hairer
, “A theory of regularity structures
,” Invent. Math.
198
(2
), 269
–504
(2014
).71.
C.
Hongler
and C.
Garban
, personal communication (December 2018
). See also the talk “Quantum field theory and SPDEs under the light of near-criticality and noise sensitivity,” http://www.newton.ac.uk/seminar/20181210143015301.72.
C.
Hongler
and K.
Kytölä
, “Ising interfaces and free boundary conditions
,” J. Am. Math. Soc.
26
(4
), 1107
–1189
(2013
).73.
C.
Hongler
and S.
Smirnov
, “The energy density in the planar Ising model
,” Acta Math.
211
(2
), 191
–225
(2013
).74.
Y.-Z.
Huang
. Two-Dimensional Conformal Geometry and Vertex Operator Algebras
, Volume 148 of Progress in Mathematics (Birkhäuser Basel
, 1997
).75.
K.
Iohara
and Y.
Koga
, Representation Theory of the Virasoro Algebra
, Springer Monographs in Mathematics (Springer-Verlag
, London
, 2011
).76.
K.
Izyurov
, “Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities
,” Commun. Math. Phys.
337
(1
), 225
–252
(2015
).77.
K.
Izyurov
, “Critical Ising interfaces in multiply-connected domains
,” Probab. Theory Relat. Fields
167
(1-2
), 379
–415
(2017
).78.
M.
Jahangoshahi
and G. F.
Lawler
, “On the smoothness of the partition function for multiple Schramm-Loewner evolutions
,” J. Stat. Phys.
173
(5
), 1353
–1368
(2018
).79.
N.
Jokela
, M.
Järvinen
, and K.
Kytölä
, “SLE boundary visits
,” Ann. Henri Poincaré
17
(6
), 1263
–1330
(2016
).80.
V. G.
Kac
, “Contravariant form for the infinite-dimensional Lie algebras and superalgebras
,” in Lecture Notes in Physics
(Springer-Verlag
, Berlin
, 1979
), Vol. 94, pp. 441
–445
.81.
V. G.
Kac
, “Highest weight representations of infinite dimensional Lie algebras
,” in Proceedings of the International Congress of Mathematicians, Helsinki, 1978
(Academia Scientiarum Fennica
, 1980
), pp. 299
–304
.82.
V. G.
Kac
, Vertex Algebras for Beginners
, Volume 10 of University Lecture Series, 2nd ed. (American Mathematical Society
, 1998
).83.
N.-G.
Kang
and N. G.
Makarov
, , Asterisque Vol. 353 (Société Mathématique de France
, 2013
).84.
A.
Karrila
, “Limits of conformal images and conformal images of limits for planar random curves
,” preprint arXiv:1810.05608 (2018
).85.
A.
Karrila
, “Multiple SLE type scaling limits: From local to global
,” preprint arXiv:1903.10354 (2019
).86.
A.
Karrila
, K.
Kytölä
, and E.
Peltola
, “Boundary correlations in planar LERW and UST
,” Commun. Math. Phys.
(to be published); preprint arXiv:1702.03261 (2017
).87.
A.
Kemppainen
, Schramm-Loewner Evolution
, SpringerBriefs in Mathematical Physics (Springer International Publishing
, 2017
).88.
A.
Kemppainen
and S.
Smirnov
, “Random curves, scaling limits and Loewner evolutions
,” Ann. Probab.
45
(2
), 698
–779
(2017
); e-print arXiv:1212.6215.89.
R. W.
Kenyon
, “The asymptotic determinant of the discrete Laplacian
,” Acta Math.
185
(2
), 239
–286
(2000
).90.
R. W.
Kenyon
, “Conformal invariance of domino tiling
,” Ann. Probab.
28
(2
), 759
–795
(2000
).91.
R. W.
Kenyon
, “Dominos and the Gaussian free field
,” Ann. Probab.
29
(3
), 1128
–1137
(2001
).92.
M.
Kontsevich
, “CFT, SLE, and phase boundaries
,” in Oberwolfach Arbeitstagung
, 2003
.93.
M.
Kontsevich
and Y.
Suhov
, “On Malliavin measures, SLE, and CFT
,” Proc. Steklov Inst. Math.
258
(1
), 100
–146
(2007
).94.
M. J.
Kozdron
and G. F.
Lawler
, “The configurational measure on mutually avoiding SLE paths
,” Fields Inst. Commun.
50
, 199
–224
(2007
).95.
K.
Kytölä
, “On conformal field theory of SLE(κ, ρ)
,” J. Stat. Phys.
123
(6
), 1169
–1181
(2006
).96.
K.
Kytölä
and E.
Peltola
, “Pure partition functions of multiple SLEs
,” Commun. Math. Phys.
346
(1
), 237
–292
(2016
).97.
K.
Kytölä
and E.
Peltola
, “Conformally covariant boundary correlation functions with a quantum group
,” J. Eur. Math. Soc.
(published online); e-print arXiv:1408.1384.98.
R. P.
Langlands
, M.-A.
Lewis
, and Y.
Saint-Aubin
, “Universality and conformal invariance for the Ising model in domains with boundary
,” J. Stat. Phys.
98
(1-2
), 131
–244
(2000
).99.
R. P.
Langlands
, P.
Pouliot
, and Y.
Saint-Aubin
, “Conformal invariance in 2D percolation
,” Bull. Am. Math. Soc.
30
, 1
–61
(1994
).100.
G. F.
Lawler
, Conformally Invariant Processes in the Plane
, Volume 114 of Mathematical Surveys and Monographs (American Mathematical Society
, 2005
).101.
G. F.
Lawler
, “Schramm-Loewner evolution
,” in Statistical Mechanics
, IAS/Park City Mathematical Series (American Mathematical Society
, 2009
), pp. 231
–295
.102.
G. F.
Lawler
, “Partition functions, loop measure, and versions of SLE
,” J. Stat. Phys.
134
(5-6
), 813
–837
(2009
).103.
G. F.
Lawler
, O.
Schramm
, and W.
Werner
, “Values of Brownian intersection exponents I: Half-plane exponents
,” Acta Math.
187
(2
), 237
–273
(2001
).104.
G. F.
Lawler
, O.
Schramm
, and W.
Werner
, “Values of Brownian intersection exponents II: Plane exponents
,” Acta Math.
187
(2
), 275
–308
(2001
).105.
G. F.
Lawler
, O.
Schramm
, and W.
Werner
, “One-arm exponent for 2D critical percolation
,” Electron. J. Probab.
7
(2
), 1
–13
(2002
).106.
G. F.
Lawler
, O.
Schramm
, and W.
Werner
, “Conformal restriction: The chordal case
,” J. Am. Math. Soc.
16
(4
), 917
–955
(2003
).107.
G. F.
Lawler
, O.
Schramm
, and W.
Werner
, “Conformal invariance of planar loop-erased random walks and uniform spanning trees
,” Ann. Probab.
32
(1B
), 939
–995
(2004
).108.
J.
Lenells
and F.
Viklund
, “Schramm’s formula and the Green’s function for multiple SLE
,” J. Stat. Phys.
176
(4
), 873
–931
(2019
).109.
C.
Loewner
, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I
,” Math. Ann.
89
, 103
–121
(1923
).110.
T. J.
Lyons
, “Differential equations driven by rough signals
,” Rev. Mat. Iberoam.
14
(2
), 215
–310
(1998
).111.
B. M.
McCoy
and T. T.
Wu
, The Two-Dimensional Ising Model
(Harvard University Press
, 1973
).112.
G.
Miermont
, “The Brownian map is the scaling limit of uniform random plane quadrangulations
,” Acta Math.
210
(2
), 319
–401
(2013
).113.
J.
Miller
and S.
Sheffield
, “Imaginary geometry I: Interacting SLEs
,” Probab. Theory Relat. Fields
164
(3-4
), 553
–705
(2016
).114.
J.
Miller
and S.
Sheffield
, “Imaginary geometry II: Reversibility of SLEκ(ρ1, ρ2) for κ ∈ (0, 4)
,” Ann. Probab.
44
(3
), 1647
–1722
(2016
).115.
J.
Miller
and S.
Sheffield
, “Imaginary geometry III: Reversibility of SLEκ for κ ∈ (4, 8)
,” Ann. Math.
184
(2
), 455
–486
(2016
).116.
J.
Miller
and W.
Werner
, “Connection probabilities for conformal loop ensembles
,” Commun. Math. Phys.
362
(2
), 415
–453
(2018
).117.
G.
Mussardo
, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics
, Oxford Graduate Texts (Oxford University Press
, 2010
).118.
B.
Nienhuis
, “Exact critical point and exponents of the O(n) model in two dimensions
,” Phys. Rev. Lett.
49
, 1062
–1065
(1982
).119.
B.
Nienhuis
, “Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas
,” J. Stat. Phys.
34
(5
), 731
–761
(1984
).120.
B.
Nienhuis
, “Coulomb gas formulation of two-dimensional phase transitions
,” in Phase Transitions and Critical Phenomena
, edited by C.
Domb
and J. L.
Lebowitz
(Academic Press
, London
, 1987
), Vol. 11, pp. 1
–53
.121.
E.
Peltola
, “Basis for solutions of the Benoit and Saint-Aubin PDEs with particular asymptotics properties
,” Ann. Inst. Henri Poincaré D
(to be published); e-print arXiv:1605.06053.122.
E.
Peltola
and H.
Wu
, “Crossing probabilities of multiple Ising interfaces
,” preprint arXiv:1808.09438 (2018
).123.
E.
Peltola
and H.
Wu
, “Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF
,” Commun. Math. Phys.
366
(2
), 469
–536
(2019
).124.
J.
Polchinski
, “Scale and conformal invariance in quantum field theory
,” Nucl. Phys. B
303
(2
), 226
–236
(1988
).125.
A. M.
Polyakov
, “Conformal symmetry of critical fluctuations
,” JETP Lett.
12
(12
), 381
–383
(1970
).126.
A. M.
Polyakov
, “Non-Hamiltonian approach to conformal quantum field theory
,” Z. Eksp. Teor. Fiz.
66
, 23
–42
(1974
).127.
A. M.
Polyakov
, “Quantum geometry of bosonic strings
,” Phys. Lett. B
103
(3
), 207
–210
(1981
).128.
S.
Rohde
and O.
Schramm
, “Basic properties of SLE
,” Ann. Math.
161
(2
), 883
–924
(2005
).129.
M.
Schottenloher
, A Mathematical Introduction to Conformal Field Theory
, Volume 759 of Lecture Notes in Physics, 2nd ed. (Springer-Verlag
, Berlin Heidelberg
, 2008
).130.
O.
Schramm
, “Scaling limits of loop-erased random walks and uniform spanning trees
,” Isr. J. Math.
118
(1
), 221
–288
(2000
).131.
O.
Schramm
, “Conformally invariant scaling limits, an overview and a collection of problems
,” in Proceedings of ICM 2006, Madrid, Spain
(European Mathematical Society
, 2006
), pp. 513
–543
.132.
O.
Schramm
and S.
Sheffield
, “Contour lines of the two-dimensional discrete Gaussian free field
,” Acta Math.
202
(1
), 21
–137
(2009
).133.
O.
Schramm
and S.
Sheffield
, “A contour line of the continuum Gaussian free field
,” Probab. Theory Relat. Fields
157
(1
), 47
–80
(2013
).134.
S.
Sheffield
, “Gaussian free field for mathematicians
,” Probab. Theory Relat. Fields
139
(3
), 521
–541
(2007
).135.
S.
Sheffield
, “Exploration trees and conformal loop ensembles
,” Duke Math. J.
147
(1
), 79
–129
(2009
).136.
S.
Sheffield
and D. B.
Wilson
, “Schramm’s proof of Watts’ formula
,” Ann. Probab.
39
(5
), 1844
–1863
(2011
).137.
S.
Sheffield
and W.
Werner
, “Conformal loop ensembles: The Markovian characterization and the loop-soup construction
,” Ann. Math.
176
(3
), 1827
–1917
(2012
).138.
S.
Smirnov
, “Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits
,” C. R. Acad. Sci.
333
(3
), 239
–244
(2001
); Updated on 2009, see e-print arXiv:0909.4499.139.
S.
Smirnov
, “Towards conformal invariance of 2D lattice models
,” in Proceedings of ICM 2006, Madrid, Spain
(European Mathematical Society
, 2006
), Vol. II, pp. 1421
–1451
.140.
S.
Smirnov
, “Conformal invariance in random cluster models I. Holomorphic fermions in the Ising model
,” Ann. Math.
172
(2
), 1435
–1467
(2010
).141.
S.
Smirnov
and W.
Werner
, “Critical exponents for two-dimensional percolation
,” Math. Res. Lett.
8
(6
), 729
–744
(2001
).142.
B.
Virag
, “Brownian beads
,” Probab. Theory Relat. Fields
127
(3
), 367
–387
(2003
).143.
G.
Watts
, “A crossing probability for critical percolation in two dimensions
,” J. Phys. A: Math. Gen.
29
, L363
(1996
).144.
K.
Wilson
, “Non-Lagrangian models of current algebra
,” Phys. Rev.
179
(5
), 1499
–1512
(1969
).145.
K.
Wilson
and W.
Zimmermann
, “Operator product expansions and composite field operators in the general framework of quantum field theory
,” Commun. Math. Phys.
24
(2
), 87
–106
(1972
).146.
E.
Witten
, “Perturbative quantum field theory
,” in Quantum Fields and Strings: A Course for Mathematicians, Volume 1
, edited by P.
Deligne
, P.
Etingof
, D. S.
Freed
, L. C.
Jeffrey
, D.
Kazhdan
, J. W.
Morgan
, D. R.
Morrison
, and E.
Witten
(American Mathematical Society
, Providence, RI
; Institute for Advanced Study (IAS)
, Princeton, NJ; Providence, RI
, 1999
).147.
H.
Wu
, “Hypergeometric SLE: Conformal Markov characterization and applications
,” preprint arXiv:1703.02022 (2017
).148.
D.
Zhan
, “Reversibility of chordal SLE
,” Ann. Probab.
36
(4
), 1472
–1494
(2008
).149.
D.
Zhan
, “The scaling limits of planar LERW in finitely connected domains
,” Ann. Probab.
36
(2
), 467
–529
(2008
).150.
Y.
Zhu
, “Modular invariance of characters of vertex operator algebras
,” J. Am. Math. Soc.
9
(1
), 237
–307
(1996
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.