Following a novel approach, all known basic mass generation mechanisms consistent with an exact Abelian U(1) gauge symmetry are shown to be related through an intricate network of dualities whatever the spacetime dimension. This equivalence, which applies in the absence of any supersymmetry, is however restricted by the presence of topological terms generating possible topological effects. In particular, in 3 + 1 dimensions, the duality relations between the Maxwell-Higgs model, the Stueckelberg, and the topological mass generation mechanisms are then established following a careful treatment of the gauge symmetry content. This result offers a new framework for an effective description of superconductivity or topological defects built from fields beyond the Standard Model.

1.
B.
Bertrand
, “
Topology and mass generation mechanisms in abelian gauge field theories
,” Ph.D. thesis,
Université Catholique de Louvain
,
Louvain-la-Neuve, Belgium
,
2008
, available at https://dial.uclouvain.be/pr/boreal/object/boreal:19593.
2.
E.
Cremmer
and
J.
Scherk
,
Nucl. Phys. B
72
,
117
(
1974
).
3.
C. R.
Hagen
,
Phys. Rev. D
19
,
2367
(
1979
).
4.
T. J.
Allen
,
M. J.
Bowick
, and
A.
Lahiri
,
Mod. Phys. Lett. A
6
,
559
(
1991
).
5.
B.
Bertrand
and
J.
Govaerts
,
J. Phys. A: Math. Theor.
40
,
F979
(
2007
); e-print arXiv:0705.3452 [hep-th].
6.
E. M. C.
Abreu
,
A.
Calil
,
L. S.
Grigorio
,
M. S.
Guimaraes
, and
C.
Wotzasek
,
Int. J. Mod. Phys. A
23
,
4829
(
2008
); e-print arXiv:0711.4966 [hep-th].
7.
H.
Ruegg
and
M.
Ruiz-Altaba
,
Int. J. Mod. Phys. A
19
,
3265
(
2004
); e-print arXiv:hep-th/0304245.
8.
S. K.
Kim
,
Y. W.
Kim
, and
Y. J.
Park
,
Mod. Phys. Lett. A
18
,
2287
(
2003
); e-print arXiv:hep-th/0301096.
9.
R.
Menezes
,
J. R. S.
Nascimento
,
R. F.
Ribeiro
, and
C.
Wotzasek
,
Phys. Lett. B
564
,
261
(
2003
); e-print arXiv:hep-th/0305112.
10.
T. H.
Hansson
,
V.
Oganesyan
, and
S. L.
Sondhi
,
Ann. Phys.
313
(
2
),
497
(
2004
).
11.
K. M.
Lee
,
Phys. Rev. D
48
,
2493
(
1993
); e-print arXiv:hep-th/9301102.
12.
A.
Smailagic
and
E.
Spallucci
,
Phys. Rev. D
61
,
067701
(
2000
); e-print arXiv:hep-th/9911089.
13.
M.
Botta Cantcheff
,
Phys. Lett. B
533
,
126
(
2002
); e-print arXiv:hep-th/0110264.
14.
E.
Harikumar
and
M.
Sivakumar
,
Mod. Phys. Lett. A
15
,
121
(
2000
); e-print arXiv:hep-th/9911244.
15.
H. B.
Nielsen
and
P.
Olesen
,
Nucl. Phys. B
61
,
45
(
1973
).
16.
J.
Govaerts
,
J. Phys. A: Math. Theor.
34
,
8955
(
2001
); e-print arXiv:hep-th/0007112.
17.
M. N.
Chernodub
,
L. D.
Faddeev
, and
A. J.
Niemi
,
J. High Energy Phys.
2008
,
014
; e-print arXiv:0804.1544 [hep-th].
18.
M. C.
Diamantini
,
P.
Sodano
, and
C. A.
Trugenberger
,
Nucl. Phys. B
474
,
641
(
1996
); e-print arXiv:hep-th/9511168.
19.
I. D.
Choudhury
,
M. C.
Diamantini
,
G.
Guarnaccia
,
A.
Lahiri
, and
C. A.
Trugenberger
,
J. High Energy Phys.
2015
,
81
; e-print arXiv:1503.06314 [hep-th].
20.
M. C.
Diamantini
and
C. A.
Trugenberger
,
Nucl. Phys. B
891
,
401
(
2015
); e-print arXiv:1408.5066 [hep-th].
21.
A.
Derevianko
and
M.
Pospelov
,
Nat. Phys.
10
,
933
(
2014
); e-print arXiv:1311.1244 [physics.atom-ph].
22.
Y. V.
Stadnik
and
V. V.
Flambaum
,
Phys. Rev. Lett.
113
,
151301
(
2014
); e-print arXiv:1405.5337 [hep-ph].
You do not currently have access to this content.