For the coupled system of classical Maxwell-Lorentz equations, we show that F(x̂,t)=lim|x||x|2F(x,t) and F(k̂,t)=lim|k|0|k|F^(k,t), where F is the Faraday tensor, F̂ is its Fourier transform in space, and x̂x|x|, is independent of t. We combine this observation with the scattering theory for the Maxwell-Lorentz system due to Komech and Spohn, which gives the asymptotic decoupling of F into the scattered radiation Fsc,± and the soliton field Fv± depending on the asymptotic velocity v± of the electron at large positive (+), respectively, negative (−) times. This gives a soft-photon theorem of the form Fsc,+(k̂)Fsc,(k̂)=(Fv+(k̂)Fv(k̂)), and analogously for F, which links the low-frequency part of the scattered radiation to the change of the electron’s velocity. Implications for the infrared problem in QED are discussed in the Conclusions.

1.
Bloch
,
F.
and
Nordsieck
,
A.
, “
Note on the radiation field of the electron
,”
Phys. Rev.
52
,
54
59
(
1937
).
2.
Bloch
,
F.
and
Nordsieck
,
A.
, “
The low frequency radiation of a scattered electron
,”
Phys. Rev.
52
,
59
62
(
1937
).
3.
Buchholz
,
D.
, “
The physical state space of quantum electrodynamics
,”
Commun. Math. Phys.
85
,
49
71
(
1982
).
4.
Buchholz
,
D.
and
Roberts
,
J. E.
, “
New light on infrared problems: Sectors, statistics, symmetries and spectrum
,”
Commun. Math. Phys.
330
,
935
972
(
2014
).
5.
Cadamuro
,
D.
and
Dybalski
,
W.
, “
Curing velocity superselection in non-relativistic QED by restriction to a lightcone
,” e-print arXiv:1902.09478.
6.
Chen
,
T.
,
Fröhlich
,
J.
, and
Pizzo
,
A.
, “
Infraparticle scattering states in non-relativistic QED. II. Mass shell properties
,”
J. Math. Phys.
50
,
012103
(
2009
).
7.
Chen
,
T.
,
Fröhlich
,
J.
, and
Pizzo
,
A.
, “
Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm
,”
Commun. Math. Phys.
294
,
761
825
(
2010
).
8.
Di Piazza
,
A.
, “
Analytical infrared limit of nonlinear Thomson scattering including radiation reaction
,”
Phys. Rev. B
782
,
559
565
(
2018
).
9.
Dybalski
,
W.
, “
From Faddeev-Kulish to LSZ. Towards a non-perturbative description of colliding electrons
,”
Nucl. Phys. B
925
,
455
469
(
2017
).
10.
Fröhlich
,
J.
, “
On the infrared problem in a model of scalar electrons and massless, scalar bosons
,”
Ann. Inst. H. Poincaré Sect. A
19
,
1
103
(
1973
).
11.
Fröhlich
,
J.
, “
Existence of dressed one electron states in a class of persistent models
,”
Fortschr. Phys.
22
,
158
198
(
1974
).
12.
Fröhlich
,
J.
,
Morchio
,
G.
, and
Strocchi
,
F.
, “
Infrared problem and spontaneous breaking of the Lorentz group in QED
,”
Phys. Lett. B
89
,
61
64
(
1979
).
13.
Fröhlich
,
J.
and
Pizzo
,
A.
, “
Renormalized electron mass in non-relativistic QED
,”
Commun. Math. Phys.
294
,
439
470
(
2010
).
14.
Hartenstein
,
V.
, “
On the Maxwell-Lorentz dynamics of point charges
,” Ph.D. thesis,
Ludwig-Maximilians-Universität München
,
2018
.
15.
Herdegen
,
A.
, “
Asymptotic structure of electrodynamics revisited
,”
Lett. Mat. Phys.
107
,
1439
1470
(
2017
).
16.
Hoang
,
D. V.
, “
Soliton solutions and scattering theory of Maxwell-Newton equations
,” Bachelor thesis,
Ludwig-Maximilians-Universität München
,
2018
.
17.
Komech
,
A.
and
Spohn
,
H.
, “
Long-time asymptotics for coupled Maxwell-Lorentz equations
,”
Commun. PDE
25
,
559
584
(
2000
).
18.
Könnenberg
,
M.
and
Matte
,
O.
, “
The mass shell in the semi-relativistic Pauli-Fierz model
,”
Ann. Henri Poincaré
15
,
863
915
(
2015
).
19.
Kulish
,
P. P.
and
Faddeev
,
L. D.
, “
Asymptotic conditions and infrared divergences in quantum electrodynamics
,”
Theor. Math. Phys.
4
(
2
),
745
757
(
1970
)
Kulish
,
P. P.
and
Faddeev
,
L. D.
, [
Teor. Mat. Fiz.
4
(
2
),
153
170
(
1970
)].
20.
Prabhu
,
K.
, “
Conservation of asymptotic charges from past to future null infinity: Maxwell fields
,”
JHEP
2018
,
113
.
21.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness
(
Academic Press
,
1980
).
22.
Spohn
,
H.
,
Dynamics of Charged Particles and Their Radiation Fields
(
Cambridge
,
2004
).
23.
Strominger
,
A.
,
Lectures on the Infrared Structure of Gravity and Gauge Theory
(
Princeton University Press
,
2018
).
You do not currently have access to this content.