In this paper, we study Hamiltonian systems on contact manifolds, which is an appropriate scenario to discuss dissipative systems. We show how the dissipative dynamics can be interpreted as a Legendrian submanifold, and also prove a coisotropic reduction theorem similar to the one in symplectic mechanics; as a consequence, we get a method to reduce the dynamics of contact Hamiltonian systems.
REFERENCES
1.
R.
Abraham
and J. E.
Marsden
, Foundations of Mechanics
, 2nd ed. (AMS Chelsea Publishing
, Redwood City, CA
, 1978
).2.
M.
de León
and P. R.
Rodrigues
, Methods of Differential Geometry in Analytical Mechanics
(Elsevier
, Amsterdam
, 2011
), Vol. 158.3.
C.
Albert
, “Le théorème de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact
,” J. Geom. Phys.
6
, 627
–649
(1989
).4.
F.
Cantrijn
, M.
de León
, and E.
Lacomba
, “Gradient vector fields on cosymplectic manifolds
,” J. Phys. A: Math. Gen.
25
, 175
(1992
).5.
R.
Mrugala
, J. D.
Nulton
, J.
Christian Schön
, and P.
Salamon
, “Contact structure in thermodynamic theory
,” Rep. Math. Phys.
29
, 109
–121
(1991
).6.
M.
Grmela
, “Contact geometry of mesoscopic thermodynamics and dynamics
,” Entropy
16
, 1652
–1686
(2014
).7.
D.
Eberard
, B. M.
Maschke
, and A. J.
van der Schaft
, “An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes
,” Rep. Math. Phys.
60
, 175
–198
(2007
).8.
A.
Bravetti
and D.
Tapias
, “Thermostat algorithm for generating target ensembles
,” Phys. Rev. E
93
, 022139
(2016
).9.
H.
Ramírez
, B.
Maschke
, and D.
Sbarbaro
, “Partial stabilization of input-output contact systems on a Legendre submanifold
,” IEEE Trans. Autom. Control
62
, 1431
–1437
(2017
).10.
11.
T.
Russell
, “Symplectic geometry: The natural geometry of economics?
,” Econ. Lett.
112
, 236
–238
(2011
).12.
C. P.
Boyer
, “Completely integrable contact Hamiltonian systems and toric contact structures on S2 × S3
,” Symmetry, Integrability Geom.: Methods Appl.
7
, 058
(2011
).13.
A.
Sergyeyev
, “New integrable (3+1)-dimensional systems and contact geometry
,” Lett. Math. Phys.
108
, 359
–376
(2018
); e-print arXiv:1401.2122.14.
M.
Visinescu
, “Contact Hamiltonian systems and complete integrability
,” AIP Conf. Proc.
1916
, 020002
(2017
).15.
A.
Bravetti
, “Contact Hamiltonian dynamics: The concept and its use
,” Entropy
19
, 535
(2017
).16.
J.
Marsden
and A.
Weinstein
, “Reduction of symplectic manifolds with symmetry
,” Rep. Math. Phys.
5
, 121
–130
(1974
).17.
K. R.
Meyer
, “Symmetries and integrals in mechanics
,” in Dynamical Systems
(Elsevier
, 1973
), pp. 259
–272
.18.
A. G.
Tortorella
, “Rigidity of integral coisotropic submanifolds of contact manifolds
,” Lett. Math. Phys.
108
, 883
–896
(2018
).19.
M. S.
Borman
and F.
Zapolsky
, “Quasimorphisms on contactomorphism groups and contact rigidity
,” Geom. Topol.
19
, 365
–411
(2015
).20.
D. E.
Blair
, Contact Manifolds in Riemannian Geometry
, Lecture Notes in Mathematics (Springer-Verlag
, Berlin, Heidelberg
, 1976
).21.
D. E.
Blair
, Riemannian Geometry of Contact and Symplectic Manifolds
, Progress in Mathematics (Birkhäuser
, Basel
, 2002
).22.
V. I.
Arnold
, Mathematical Methods of Classical Mechanics
, 2nd ed., Graduate Texts in Mathematics No. 60 (Springer
, New York
, 1997
).23.
24.
C.
Willett
, “Contact reduction
,” Trans. Am. Math. Soc.
354
, 4245
–4260
(2002
).25.
H. V.
Lê
, Y.-G.
Oh
, A. G.
Tortorella
, and L.
Vitagliano
, “Deformations of coisotropic submanifolds in Jacobi manifolds
,” J. Symplectic Geom.
16
, 1051
–1116
(2018
).26.
Q.
Liu
, P. J.
Torres
, and C.
Wang
, “Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior
,” Ann. Phys.
395
, 26
–44
(2018
).27.
C.
Godbillon
, Géométrie Différentielle et Mécanique Analytique
(Hermann
, Paris
, 1969
), OCLC: 1038025757.28.
A.
Lichnerowicz
, “Les variétés de Jacobi et leurs algèbres de Lie associées
,” J. Math. Pures Appl.
57
, 453
–488
(1978
).29.
M.
de León
and C.
Sardón
, “Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems
,” J. Phys. A: Math. Theor.
50
, 255205
(2017
).30.
J. A.
Schouten
, On the Differential Operators of First Order in Tensor Calculus
(Stichting Mathematisch Centrum
, 1953
).31.
A.
Nijenhuis
, “Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I
,” Indag. Math. A
58
, 390
–403
(1955
).32.
A. A.
Kirillov
, “Local lie algebras
,” Akad. Nauk SSSR Mosk. Mat. O-vo. Usp. Mat. Nauk
31
, 57
–76
(1976
).33.
B.
Cappelletti-Montano
, A.
De Nicola
, and I.
Yudin
, “A survey on cosymplectic geometry
,” Rev. Math. Phys.
25
, 1343002
(2013
).34.
P.
Dazord
, A.
Lichnerowicz
, and C.-M.
Marle
, “Structure locale des variétés de Jacobi
,” J. Math. Pures Appl.
70
, 101
–152
(1991
).35.
H. J.
Sussmann
, “Orbits of families of vector fields and integrability of distributions
,” Trans. Am. Math. Soc.
180
, 171
(1973
).36.
A.
Weinstein
, “The local structure of Poisson manifolds
,” J. Differ. Geom.
18
, 523
–557
(1983
).37.
This is useful for applications in statistical mechanics, as can be read on the article.38 There might be other invariant volume forms.
38.
A.
Bravetti
and D.
Tapias
, “Liouville’s theorem and the canonical measure for nonconservative systems from contact geometry
,” J. Phys. A: Math. Theor.
48
, 245001
(2015
).39.
W. M.
Tulczyjew
, “Les sous-variétés Lagrangiennes et la dynamique Lagrangienne
,” C. R. Acad. Sci. Paris, Ser. A
283
, 675
–678
(1976
).40.
R.
Ibáñez
, M.
de León
, J. C.
Marrero
, and D. M.
de Diego
, “Co-isotropic and Legendre–Lagrangian submanifolds and conformal Jacobi morphisms
,” J. Phys. A: Math. Gen.
30
, 5427
–5444
(1997
).41.
K.
Yano
and S.
Ishihara
, Tangent and Cotangent Bundles: Differential Geometry
, Pure and Applied Mathematics Vol. 16 (Dekker
, New York
, 1973
).42.
W. M.
Tulczyjew
, “Les sous-variétés Lagrangiennes et la dynamique Hamiltonienne
,” C. R. Acad. Sci. Paris, Ser. A
283
, 15
–18
(1976
).43.
J. E.
Marsden
and T.
Ratiu
, “Reduction of Poisson manifolds
,” Lett. Math. Phys.
11
, 161
–169
(1986
).44.
J. M.
Nunes da Costa
, “Réduction des variétés de Jacobi
,” C. R. Acad. Sci., Ser. I: Math.
308
, 101
–103
(1989
).45.
J. M.
Nunes da Costa
, “Une généralisation, pour les variétés de Jacobi, du théorème de réduction de Marsden-Weinstein
,” C. R. Acad. Sci., Ser. I: Math.
310
, 411
–414
(1990
).46.
H.
Geiges
, “Constructions of contact manifolds
,” Math. Proc. Cambridge Philos. Soc.
121
, 455
–464
(1997
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.