We investigate the local and global optimality of the triangular, square, simple cubic, face-centered-cubic (fcc) and body-centered-cubic (bcc) lattices and the hexagonal-close-packing (hcp) structure for a potential energy per point generated by a Morse potential with parameters (α, r0). In dimension 2 and for α large enough, the optimality of the triangular lattice is shown at fixed densities belonging to an explicit interval, using a method based on lattice theta function properties. Furthermore, this energy per point is numerically studied among all two-dimensional Bravais lattices with respect to their density. The behavior of the minimizer, when the density varies, matches with the one that has been already observed for the Lennard-Jones potential, confirming a conjecture we have previously stated for differences of completely monotone functions. Furthermore, in dimension 3, the local minimality of the cubic, fcc, and bcc lattices is checked, showing several interesting similarities with the Lennard-Jones potential case. We also show that the square, triangular, cubic, fcc, and bcc lattices are the only Bravais lattices in dimensions 2 and 3 being critical points of a large class of lattice energies (including the one studied in this paper) in some open intervals of densities as we observe for the Lennard-Jones and the Morse potential lattice energies. More surprisingly, in the Morse potential case, we numerically found a transition of the global minimizer from bcc, fcc to hcp, as α increases, that we partially and heuristically explain from the lattice theta function properties. Thus, it allows us to state a conjecture about the global minimizer of the Morse lattice energy with respect to the value of α. Finally, we compare the values of α found experimentally for metals and rare-gas crystals with the expected lattice ground-state structure given by our numerical investigation/conjecture. Only in a few cases does the known ground-state crystal structure match the minimizer we find for the expected value of α. Our conclusion is that the pairwise interaction model with Morse potential and fixed α is not adapted to describe metals and rare-gas crystals if we want to take into consideration that the lattice structure we find in nature is the ground-state of the associated potential energy.

1.
A.
Aftalion
,
X.
Blanc
, and
F.
Nier
, “
Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates
,”
J. Funct. Anal.
241
(
2
),
661
702
(
2006
).
2.
R.
Alimi
,
R. B.
Gerber
, and
V. A.
Apkarian
, “
Dynamics of molecular reactions in solids: Photodissociation of F2 in crystalline Ar
,”
J. Chem. Phys.
92
(
6
),
3551
3558
(
1990
).
3.
M.
Zschornak
,
T.
Leisegang
,
F.
Meutzner
,
H.
Stöcker
,
T.
Lemser
,
T.
Tauscher
,
C.
Funke
,
C.
Cherkouk
, and
D. C.
Meyer
, “
Harmonic principles of elemental crystals—from atomic interaction to fundamental symmetry
,”
Symmetry
10
(
6
),
228
(
2018
).
4.
C.
Bachoc
and
B.
Venkov
, “
Modular forms, lattices and spherical designs
,” in
Réseaux Euclidiens, Designs Sphériques et Groupes
, L’Ens. Math., Monographie Vol. 37, edited by
J.
Martinet
(
2001
), pp.
87
111
.
5.
M.
Bandegi
and
D.
Shirokoff
, “
Approximate global minimizers to pairwise interaction problems via convex relaxation
,”
SIAM J. Appl. Dyn. Systems
17
(
1
),
417
456
(
2018
).
6.
J. A.
Barker
,
R. O.
Watts
,
J. K.
Lee
,
T. P.
Schafer
, and
Y. T.
Lee
, “
Interatomic potentials for krypton and xenon
,”
J. Chem. Phys.
61
(
8
),
3081
3089
(
1974
).
7.
A. J.
Bernoff
and
C. M.
Topaz
, “
Nonlocal aggregation models: A primer of swarm equilibria
,”
SIAM Rev.
55
(
4
),
709
747
(
2013
).
8.
L.
Bétermin
, “
Two-dimensional theta functions and crystallization among Bravais lattices
,”
SIAM J. Math. Anal.
48
(
5
),
3236
3269
(
2016
).
9.
L.
Bétermin
, “
Local optimality of cubic lattices for interaction energies
,”
Anal. Math. Phys.
9
(
1
),
403
(
2019
).
10.
L.
Bétermin
, “
Local variational study of 2d lattice energies and application to Lennard-Jones type interactions
,”
Nonlinearity
31
(
9
),
3973
4005
(
2018
).
11.
L.
Bétermin
, “
Minimal soft lattice theta functions
,” preprint arXiv:1809.00473 (
2018
).
12.
L.
Bétermin
and
H.
Knüpfer
, “
On Born’s conjecture about optimal distribution of charges for an infinite ionic crystal
,”
J. Nonlinear Sci.
28
(
5
),
1629
1656
(
2018
).
13.
L.
Bétermin
and
H.
Knüpfer
, “
Optimal lattice configurations for interacting spatially extended particles
,”
Lett. Math. Phys.
108
(
10
),
2213
2228
(
2018
).
14.
L.
Bétermin
,
H.
Knüpfer
, and
F.
Nolte
, “
Crystallization of one-dimensional alternating two-components systems
,” preprint arXiv:1804.05743 (
2018
).
15.
L.
Bétermin
,
L.
De Luca
, and
M.
Petrache
, “
Crystallization to the square lattice for a two-body potential
,” preprint arXiv:1907.06105 (
2019
).
16.
L.
Bétermin
and
M.
Petrache
, “
Dimension reduction techniques for the minimization of theta functions on lattices
,”
J. Math. Phys.
58
,
071902
(
2017
).
17.
L.
Bétermin
and
M.
Petrache
, “
Optimal and non-optimal lattices for non-completely monotone interaction potentials
,” preprint arXiv:1806.02233 (
2018
).
18.
L.
Bétermin
and
P.
Zhang
, “
Minimization of energy per particle among Bravais lattices in
R2
: Lennard-Jones and Thomas-Fermi cases
,”
Commun. Contemp. Math.
17
(
6
),
1450049
(
2015
).
19.
X.
Blanc
and
M.
Lewin
, “
The crystallization conjecture: A review
,”
EMS Surv. Math. Sci.
2
(
2
),
255
306
(
2015
).
20.
M.
Born
, “
On the stability of crystal lattices. I
,”
Math. Proc. Cambridge Philos. Soc.
36
(
2
),
160
172
(
1940
).
21.
R. A.
Buckingham
, “
The classical equation of state of gaseous helium, neon and argon
,”
Proc. R. Soc. London, Ser. A
168
,
264
283
(
1938
).
22.
J. A.
Cañizo
,
J. A.
Carrillo
, and
F. S.
Patacchini
, “
Existence of compactly supported global minimisers for the interaction energy
,”
Arch. Ration. Mech. Anal.
217
(
3
),
1197
1217
(
2015
).
23.
J. W. S.
Cassels
, “
On a problem of Rankin about the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
4
(
2
),
73
80
(
1959
).
24.
X.
Chen
and
Y.
Oshita
, “
An application of the modular function in nonlocal variational problems
,”
Arch. Ration. Mech. Anal.
186
(
1
),
109
132
(
2007
).
25.
H.
Cohn
and
A.
Kumar
, “
Universally optimal distribution of points on spheres
,”
J. Am. Math. Soc.
20
(
1
),
99
148
(
2007
).
26.
H.
Cohn
,
A.
Kumar
,
S. D.
Miller
,
D.
Radchenko
, and
M.
Viazovska
, “
Universal optimality of the E8 and leech lattices and interpolation formulas
,” preprint arXiv:1902.05438 (
2019
).
27.
R.
Coulangeon
, “
Spherical designs and zeta functions of lattices
,”
Int. Math. Res. Not.
2006
,
49620
.
28.
R.
Coulangeon
and
A.
Schürmann
, “
Energy minimization, periodic sets and spherical designs
,”
Int. Math. Res. Not.
2012
,
829
848
.
29.
R.
Coulangeon
and
A.
Schürmann
, “
Local energy optimality of periodic sets
,” preprint arXiv:1802.02072 (
2018
).
30.
P. H.
Diananda
, “
Notes on two lemmas concerning the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
6
(
4
),
202
204
(
1964
).
31.
M. R.
D’Orsogna
,
Y. L.
Chuang
,
A. L.
Bertozzi
, and
L. S.
Chayes
, “
Self-propelled particles with soft-core interactions: Patterns, stability, and collapse
,”
Phys. Rev. Lett.
96
(
10
),
104302
(
2006
).
32.
W.
E
and
D.
Li
, “
On the crystallization of 2d hexagonal lattices
,”
Commun. Math. Phys.
286
,
1099
1140
(
2009
).
33.
V.
Ennola
, “
A Lemma about the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
6
(
4
),
198
201
(
1964
).
34.
V.
Ennola
, “
On a problem about the Epstein zeta-function
,”
Math. Proc. Cambridge Philos. Soc.
60
(
4
),
855
875
(
1964
).
35.
L. C.
Flatley
and
F.
Theil
, “
Face-centred cubic crystallization of atomistic configurations
,”
Arch. Ration. Mech. Anal.
218
(
1
),
363
416
(
2015
).
36.
M.
Friedrich
and
L.
Kreutz
, “
Crystallization in the hexagonal lattice for ionic dimers
,”
Math. Models Methods Appl. Sci
(published online).
37.
C. S.
Gardner
and
C.
Radin
, “
The infinite-volume ground state of the Lennard-Jones potential
,”
J. Stat. Phys.
20
(
6
),
719
724
(
1979
).
38.
L. A.
Girifalco
and
V. G.
Weizer
, “
Application of the Morse potential function to cubic metals
,”
Phys. Rev.
114
(
3
),
687
690
(
1959
).
39.
P. M.
Gruber
, “
Application of an idea of Voronoĭ to lattice zeta functions
,”
Proc. Steklov Inst. Math.
276
,
103
124
(
2012
).
40.
R. C.
Heitmann
and
C.
Radin
, “
The ground state for sticky disks
,”
J. Stat. Phys.
22
(
3
),
281
287
(
1980
).
41.
G. K.
Horton
, “
Ideal rare-gas crystals
,”
Am. J. Phys.
36
,
93
119
(
1969
).
42.
N. V.
Hung
,
T. T.
Hue
, and
N. B.
Duc
, “
Calculation of Morse potential parameters of bcc crystals and application to anharmonic interatomic effective potential, local force constant
,”
VNU J. Sci.: Math. - Phys.
31
(
3
),
23
30
(
2015
).
43.
R.
Kubo
and
T.
Nagamiya
,
Solid State Physics
(
McGraw-Hill Publ. Co.
,
1969
).
44.
R. C.
Lincoln
,
K. M.
Koliwad
, and
P. B.
Ghate
, “
Morse-potential evaluation of second- and third-order elastic constants of some cubic metals
,”
Phys. Rev.
157
,
463
466
(
1967
).
45.
L.
De Luca
and
G.
Friesecke
, “
Crystallization in two dimensions and a discrete Gauss-Bonnet theorem
,”
J. Nonlinear Sci.
28
(
1
),
69
90
(
2018
).
46.
E.
Mainini
,
P.
Piovano
, and
U.
Stefanelli
, “
Finite crystallization in the square lattice
,”
Nonlinearity
27
(
4
),
717
737
(
2014
).
47.
E.
Mainini
and
U.
Stefanelli
, “
Crystallization in carbon nanostructures
,”
Commun. Math. Phys.
328
(
2
),
545
571
(
2014
).
48.
F.
Milstein
, “
Mechanical stability of crystal lattices with two-body interactions
,”
Phys. Rev. B
2
(
2
),
512
518
(
1970
).
49.
F.
Milstein
, “
Applicability of exponentially attractive and repulsive interactomic potential functions in the description of cubic crystals
,”
J. Appl. Phys.
44
,
3825
3832
(
1973
).
50.
R. D.
Misra
, “
On the stability of crystal lattices. II
,”
Math. Proc. Cambridge Philos. Soc.
36
(
2
),
173
182
(
1940
).
51.
H. L.
Montgomery
, “
Minimal theta functions
,”
Glasgow Math. J.
30
(
1
),
75
85
(
1988
).
52.
P. M.
Morse
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
,
57
64
(
1929
).
53.
E. J.
Mueller
and
T.-L.
Ho
, “
Two-component Bose-Einstein condensates with a large number of vortices
,”
Phys. Rev. Lett.
88
(
18
),
180403
(
2002
).
54.
S.
Nonnenmacher
and
A.
Voros
, “
Chaotic eigenfunctions in phase space
,”
J. Stat. Phys.
92
,
431
518
(
1998
).
55.
H. Ö.
Pamuk
and
T.
Halicioglu
, “
Evaluation of Morse parameters for metals
,”
Phys. Stat. Sol. (a)
37
,
695
699
(
1976
).
56.
J. M.
Parson
,
P. E.
Siska
, and
Y. T.
Lee
, “
Intermolecular potentials from crossed-beam differential elastic scattering measurements. IV. Ar+Ar
,”
J. Chem. Phys.
56
(
4
),
1511
1516
(
1972
).
57.
C.
Radin
, “
Low temperature and the origin of crystalline symmetry
,”
Int. J. Mod. Phys. B
1
(
5 and 6
),
1157
1191
(
1987
).
58.
L. M.
Raff
, “
Energy transfer and reaction dynamics of matrix-isolated 1,2-difluoroethane-d4
,”
J. Chem. Phys.
93
(
5
),
3160
3176
(
1990
).
59.
R. A.
Rankin
, “
A minimum problem for the Epstein zeta-function
,”
Proc. Glasgow Math. Assoc.
1
(
4
),
149
158
(
1953
).
60.
E.
Sandier
and
S.
Serfaty
, “
From the Ginzburg-Landau model to vortex lattice problems
,”
Commun. Math. Phys.
313
(
3
),
635
743
(
2012
).
61.
P.
Sarnak
and
A.
Strömbergsson
, “
Minima of Epstein’s zeta function and heights of Flat tori
,”
Invent. Math.
165
,
115
151
(
2006
).
62.
K. S.
Sharma
and
C. M.
Kachhava
, “
Application of Morse potential to metals in the molecular-metallic-framework
,”
Proc. Indian Natl. Sci. Acad.
45. A.
(
5
),
423
431
(
1979
).
63.
A.
Süto
, “
Crystalline ground states for classical particles
,”
Phys. Rev. Lett.
95
(
26
),
265501
(
2005
).
64.
A.
Terras
,
Harmonic Analysis on Symmetric Spaces and Applications II
(
Springer
,
New York
,
1988
).
65.
F.
Theil
, “
A proof of crystallization in two dimensions
,”
Commun. Math. Phys.
262
(
1
),
209
236
(
2006
).
66.
S.
Torquato
and
F. H.
Stillinger
, “
New duality relations for classical ground states
,”
Phys. Rev. Lett.
100
(
2
),
020602
(
2008
).
67.
W. J.
Ventevogel
, “
On the configuration of systems of interacting particle with minimum potential energy per particle
,”
Physica A
92
(
3-4
),
343
361
(
1978
).
68.
W. J.
Ventevogel
and
B. R. A.
Nijboer
, “
On the configuration of systems of interacting particle with minimum potential energy per particle
,”
Physica A
98
(
1-2
),
274
288
(
1979
).
69.
W. J.
Ventevogel
and
B. R. A.
Nijboer
, “
On the configuration of systems of interacting particle with minimum potential energy per particle
,”
Physica A
99
(
3
),
569
580
(
1979
).
You do not currently have access to this content.