We study the field of an electric point charge that is slowly lowered into an n + 1 dimensional Schwarzschild-Tangherlini black hole. We find that if n > 3, then countably infinite nonzero multipole moments manifest to observers outside the event horizon as the charge falls in. This suggests the final state of the black hole is not characterized by a Reissner-Nordström-Tangherlini geometry. Instead, for odd n, the final state either possesses a degenerate horizon, undergoes a discontinuous topological transformation during the infall of the charge, or both. For even n, the final state is not guaranteed to be asymptotically flat.

The author of the article agrees to the retraction of the article effective May 5, 2021.

1.
W.
Israel
,
Phys. Rev.
164
,
1776
(
1967
).
2.
W.
Israel
,
Commun. Math. Phys.
8
,
245
(
1968
).
3.
B.
Carter
,
Phys. Rev. Lett.
26
,
331
(
1971
).
4.
B.
Carter
, in
Les Astres Occlus
, edited by
C. M.
DeWitt
and
B. S.
DeWitt
(
Gordon & Breach, NY
,
1973
).
5.
S. W.
Hawking
,
Commun. Math. Phys.
25
,
152
(
1972
).
6.
D. C.
Robinson
,
Phys. Rev. Lett.
34
,
905
(
1975
).
7.
M.
Heusler
,
Black Hole Uniqueness Theorems
(
Cambridge University Press
,
Cambridge
,
1996
).
8.
R.
Ruffini
and
J. A.
Wheeler
,
Phys. Today
24
(
1
),
30
(
1971
).
9.
R.
Emparan
,
T.
Harmark
,
V.
Niarchos
, and
N. A.
Obers
,
Phys. Rev. Lett.
102
,
191301
(
2009
).
10.
S.
Hollands
and
A.
Ishibashi
,
Classical Quantum Gravity
29
,
163001
(
2012
).
11.
R.
Emparan
and
H. S.
Reall
,
Living Rev. Relativ.
11
,
6
(
2008
).
12.
R. C.
Myers
and
M. J.
Perry
,
Ann. Phys.
172
,
304
(
1986
).
13.
G. J.
Galloway
and
R.
Schoen
,
Commun. Math. Phys.
266
,
571
(
2006
).
14.
G. J.
Galloway
,
Commun. Anal. Geom.
16
,
217
(
2008
).
15.
C.
Helfgott
,
Y.
Oz
, and
Y.
Yanay
,
J. High Energy Phys.
2006
(
2
),
25
.
16.
P. T.
Chruściel
,
J. L.
Costa
, and
M.
Heusler
,
Living Rev. Relativity
15
,
7
(
2012
).
17.
R.
Emparan
and
H. S.
Reall
,
Phys. Rev. Lett.
88
,
101101
(
2002
).
18.
F. R.
Tangherlini
,
Il Nuovo Cimento
27
,
636
(
1963
).
19.
S.
Hwang
,
Geometriae Dedicata
71
,
5
(
1998
).
20.
G.
Gibbons
,
D.
Ida
, and
T.
Shiromizu
,
Prog. Theor. Phys. Suppl.
148
,
284
(
2003
).
21.
G.
Gibbons
,
D.
Ida
, and
T.
Shiromizu
,
Phys. Rev. Lett.
89
,
041101
(
2002
).
22.
G. W.
Gibbons
,
D.
Ida
, and
T.
Shiromizu
,
Phys. Rev. D
66
,
044010
(
2002
).
23.
D.
Ida
,
A.
Ishibashi
, and
T.
Shiromizu
,
Prog. Theor. Phys. Suppl.
189
,
52
(
2011
).
24.

By “slowly,” we mean “slow enough that our static considerations remain valid.”

25.
J. M.
Cohen
and
R. M.
Wald
,
J. Math. Phys.
12
,
1845
(
1971
).
26.
S.
Persides
,
J. Math. Anal. Appl.
43
,
571
(
1973
).
27.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Princeton University Press
,
1973
).
28.
C. R.
Frye
and
C.
Efthimiou
,
Spherical Harmonics in p Dimensions
(
World Scientific Publishing Co. Pte. Ltd.
,
2014
).
29.
Z. Y.
Wen
and
J.
Avery
,
J. Math. Phys.
26
,
396
(
1985
).
30.
R. K.
Nagle
,
E. B.
Saff
, and
A. D.
Snider
,
Fundamentals of Differential Equations
(
Pearson Education, Inc.
,
2012
).
31.
W. N.
Bailey
,
Generalized Hypergeometric Series
(
Cambridge University Press
,
Cambridge
,
1935
).
32.

Otherwise (n = 3), (n − 2)|k for all kZ*, so the case we are considering never applies.

33.

Note that the final state necessarily obeys the Einstein-Maxwell equations since all results in this paper have derived from these equations.

34.
M.
Rogatko
,
Phys. Rev. D
67
,
084025
(
2003
).
35.
M.
Rogatko
,
Phys. Rev. D
73
,
124027
(
2006
).
You do not currently have access to this content.