Rosengren and Schlosser introduced notions of RN-theta functions for the seven types of irreducible reduced affine root systems, RN = AN−1, BN, BN, CN, CN, BCN, DN, NN, and gave the Macdonald denominator formulas. We prove that if the variables of the RN-theta functions are properly scaled with N, they construct seven sets of biorthogonal functions, each of which has a continuous parameter t ∈ (0, t*) with given 0 < t* < . Following the standard method in random matrix theory, we introduce seven types of one-parameter (t ∈ (0, t*)) families of determinantal point processes in one dimension, in which the correlation kernels are expressed by the biorthogonal theta functions. We demonstrate that they are elliptic extensions of the classical determinantal point processes whose correlation kernels are expressed by trigonometric and rational functions. In the scaling limits associated with N, we obtain four types of elliptic determinantal point processes with an infinite number of points and parameter t ∈ (0, t*). We give new expressions for the Macdonald denominators using the Karlin–McGregor–Lindström–Gessel–Viennot determinants for noncolliding Brownian paths and show the realization of the associated elliptic determinantal point processes as noncolliding Brownian brides with a time duration t*, which are specified by the pinned configurations at time t = 0 and t = t*.

1.
Anderson
,
G. W.
,
Guionnet
,
A.
, and
Zeitouni
,
O.
,
An Introduction to Random Matrices
(
Cambridge University Press
,
Cambridge
,
2010
).
2.
Borodin
,
A.
and
Rains
,
E. M.
, “
Eynard–Mehta theorem, Schur process, and their Pfaffian analog
,”
J. Stat. Phys.
121
,
291
317
(
2005
).
3.
Borodin
,
A. N.
and
Salminen
,
P.
,
Handbook of Brownian Motion—Facts and Formulae
, 2nd ed. (
Birkhäuser
,
Basel
,
2002
).
4.
Dyson
,
F.
, “
Missed opportunity
,”
Bull. Am. Math. Soc.
78
,
635
652
(
1972
).
5.
Forrester
,
P. J.
, “
Exact solution of the lock step model of vicious walkers
,”
J. Phys. A: Math. Gen.
23
,
1259
1273
(
1990
).
6.
Forrester
,
P. J.
, “
Particles in a magnetic field and plasma analogies: Doubly periodic boundary conditions
,”
J. Phys. A: Math. Gen.
39
,
13025
13036
(
2006
).
7.
Forrester
,
P. J.
,
Log-Gases and Random Matrices
(
Princeton University Press
,
Princeton, NJ
,
2010
).
8.
Forrester
,
P. J.
and
Warnnars
,
S. O.
, “
The importance of the Selberg integral
,”
Bull. Am. Math. Soc.
45
,
489
534
(
2008
).
9.
Fulmek
,
M.
, “
Nonintersecting lattice paths on the cylinder
,”
Sémin. Lotharingien Combin.
52
,
B52b
(
2004
); available at https://www.emis.de/journals/SLC/index.html.
10.
Gessel
,
I.
and
Viennot
,
G.
, “
Binomial determinants, paths, and hook length formulae
,”
Adv. Math.
58
,
300
321
(
1985
).
11.
Karlin
,
S.
and
McGregor
,
J.
, “
Coincidence probabilities
,”
Pacific J. Math.
9
,
1141
1164
(
1959
).
12.
Katori
,
M.
, “
Determinantal martingales and noncolliding diffusion processes
,”
Stochastic Process. Appl.
124
,
3724
3768
(
2014
).
13.
Katori
,
M.
, “
Elliptic determinantal process of type A
,”
Probab. Theory Relat. Fields
162
,
637
677
(
2015
).
14.
Katori
,
M.
,
Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model
, Springer Briefs in Mathematical Physics (
Springer
,
Tokyo
,
2015
), Vol. 11.
15.
Katori
,
M.
, “
Elliptic Bessel processes and elliptic Dyson models realized as temporally inhomogeneous processes
,”
J. Math. Phys.
57
,
103302-1
103302-32
(
2016
).
16.
Katori
,
M.
, “
Elliptic determinantal processes and elliptic Dyson models
,”
SIGMA
13
,
079
(
2017
).
17.
Katori
,
M.
, “
Two-dimensional elliptic determinantal point processes and related systems
,” Commun. Math. Phys. (to be published); e-print arXiv:math-ph/1807.08287.
18.
Katori
,
M.
and
Shirai
,
T.
, “Partial isometries, duality, and determinantal point processes” (unpublished).
19.
Katori
,
M.
and
Tanemura
,
H.
, “
Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
,”
J. Math. Phys.
45
,
3058
3085
(
2004
).
20.
Katori
,
M.
and
Tanemura
,
H.
, “
Noncolliding Brownian motion and determinantal processes
,”
J. Stat. Phys.
129
,
1233
1277
(
2007
).
21.
Krattenthaler
,
C.
, “
Advanced determinant calculus: A complement
,”
Linear Algebra Appl.
411
,
68
166
(
2005
).
22.
Liechty
,
K.
and
Wang
,
D.
, “
Nonintersecting Brownian motions on the unit circle
,”
Ann. Probab.
44
,
1134
1211
(
2016
).
23.
Liechty
,
K.
and
Wang
,
D.
, “
Nonintersecting Brownian bridges between reflecting or absorbing walls
,”
Adv. Math.
309
,
155
208
(
2017
).
24.
Lindström
,
B.
, “
On the vector representations of induced matroids
,”
Bull. London Math. Soc.
5
,
85
90
(
1973
).
25.
Macdonald
,
I. G.
, “
Affine root systems and Dedekind’s η-function
,”
Invent. Math.
15
,
91
143
(
1972
).
26.
Mehta
,
M. L.
,
Random Matrices
, 3rd ed. (
Elsevier
,
Amsterdam
,
2004
).
27.
Nagao
,
T.
and
Forrester
,
P. J.
, “
Dynamical correlations for circular ensembles of random matrices
,”
Nucl. Phys. B
660
,
557
578
(
2003
).
28.
NIST Handbook of Mathematical Functions
, edited by
Olver
,
F. W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
(
U.S. Department of Commerce, National Institute of Standards and Technology
,
Washington, DC
;
Cambridge University Press
,
Cambridge
,
2010
); available at http://dlmf.nist.gov.
29.
Rosengren
,
H.
and
Schlosser
,
M.
, “
Elliptic determinant evaluations and the Macdonald identities for affine root systems
,”
Compos. Math.
142
,
937
961
(
2006
).
30.
Shirai
,
T.
and
Takahashi
,
Y.
, “
Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point process
,”
J. Funct. Anal.
205
,
414
463
(
2003
).
31.
Shirai
,
T.
and
Takahashi
,
Y.
, “
Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties
,”
Ann. Probab.
31
,
1533
1564
(
2003
).
32.
Soshnikov
,
A.
, “
Determinantal random point fields
,”
Russ. Math. Surv.
55
,
923
975
(
2000
).
33.
Tracy
,
C. A.
and
Widom
,
H.
, “
Nonintersecting Brownian excursions
,”
Ann. Appl. Probab.
17
,
953
979
(
2007
).
34.
Warnaar
,
S. O.
, “
Summation and transformation formulas for elliptic hypergeometric series
,”
Constr. Approx.
18
,
479
502
(
2002
).
35.
Whittaker
,
E. T.
and
Watson
,
G. N.
,
A Course of Modern Analysis
, 4th ed. (
Cambridge University Press
,
Cambridge
,
1927
).
You do not currently have access to this content.