In this paper, we prove the existence of a positive solution with minimal energy for a planar Schrödinger-Poisson system, where the nonlinearity is a continuous function with exponential critical growth. We find this solution using a minimization technique on the Nehari manifold.

1.
N.
Ackermann
, “
On a periodic Schrödinger equation with nonlocal superlinear part
,”
Math. Z.
248
,
248
443
(
2004
).
2.
C. O.
Alves
,
J. M.
Bezerra do Ó
, and
O. H.
Miyagaki
, “
On nonlinear perturbations of a periodic elliptic problem in R2 involving critical growth
,”
Nonlinear Anal.
45
,
849
863
(
2001
).
3.
C. O.
Alves
and
M. A. S.
Souto
, “
Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains
,”
Z. Angew. Math. Phys.
65
,
1153
1166
(
2014
).
4.
A.
Azzollini
and
A.
Pomponio
, “
Ground state solutions for the nonlinear Schrödinger-Maxwell equations
,”
J. Math. Anal. Appl.
345
,
90
108
(
2008
).
5.
D.
Bonheure
,
S.
Cingolani
, and
J.
Van Schaftingen
, “
The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate
,”
J. Funct. Anal.
272
,
5255
5281
(
2017
).
6.
D. M.
Cao
, “
Nontrivial solution of semilinear elliptic equation with critical exponent in R2.
,”
Commun. Partial Differ. Equations
17
,
407
435
(
1992
).
7.
G.
Cerami
and
G.
Vaira
, “
Positive solutions for some non-autonomous Schrödinger-Poisson systems
,”
J. Differ. Equations
248
,
521
543
(
2010
).
8.
S.
Cingolani
,
M.
Clapp
, and
S.
Secchi
, “
Multiple solutions to a magnetic nonlinear Choquard equation
,”
Z. Angew. Math. Phys.
63
,
233
248
(
2012
).
9.
S.
Cingolani
and
T.
Weth
, “
On the planar Schrödinger-Poisson system
,”
Ann. I. Poincaré-AN
,
33
(
1
),
169
197
(
2016
).
10.
G. M.
Coclite
, “
A multiplicity result for the nonlinear Schrödinger-Maxwell equations
,”
Commun. Appl. Anal.
7
,
417
423
(
2003
).
11.
T.
D’Aprile
and
D.
Mugnai
, “
Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations
,”
Proc. R. Soc. Edinb. Sect. A
134
,
893
906
(
2004
).
12.
T.
D’Aprile
and
D.
Mugnai
, “
Non-existence results for the coupled Klein-Gordon-Maxwell equations
,”
Adv. Nonlinear Stud.
4
,
307
322
(
2004
).
13.
P.
d’Avenia
, “
Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations
,”
Adv. Nonlinear Stud.
2
,
177
192
(
2002
).
14.
I.
Ianni
and
G.
Vaira
, “
On concentration of positive bound states for the Schrödinger-Poisson problem with potentials
,”
Adv. Nonlinear Stud.
8
,
573
595
(
2008
).
15.
D. G.
de Figueiredo
,
O. H.
Miyagaki
, and
B.
Ruf
, “
Elliptic equations in R2 with nonlinearities in the critical growth range
,”
Calc. Var.
3
,
139
153
(
1995
).
16.
J. M.
Bezerra do Ó
, “
N-Laplacian equations in RN with critical growth
,”
Abstr. Appl. Anal.
2
,
301
315
(
1997
).
17.
M.
Du
and
T.
Weth
, “
Ground states and high energy solutions of the planar Schrödinger-Poisson system
,”
Nonlinearity
30
,
3492
3515
(
2017
).
18.
P. L.
Lions
, “
Solutions of Hartree-Fock equations for Coulomb systems
,”
Commun. Math. Phys.
109
,
33
97
(
1984
).
19.
P. L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, Part II
,”
Ann. Inst. Henri Poincaré, Anal. Non Linéaire
1
,
223
283
(
1984
).
20.
E. H.
Lieb
, “
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
,”
Ann. Math.
118
,
349
274
(
1983
).
21.
H.
Kikuchi
, “
On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations
,”
Nonlinear Anal.
67
,
1445
1456
(
2007
).
22.
E. H.
Lieb
, “
Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
,”
Stud. Appl. Math.
57
,
93
105
(
1977
).
23.
L.
Ma
and
L.
Zhao
, “
Classification of positive solitary solutions of the nonlinear Choquard equation
,”
Arch. Ration. Mech. Anal.
195
,
455
467
(
2010
).
24.
V.
Moroz
and
J.
Van Schaftingen
, “
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
,”
J. Funct. Anal.
265
(
2
),
153
184
(
2013
).
25.
J.
Stubbe
, “
Bound states of two-dimensional Schrödinger-Newton equations
,” e-print arXiv:0807.4059v1 (
2008
).
26.
F.
Zhao
and
L.
Zhao
, “
Positive solutions for Schrödinger-Poisson equations with a critical exponent
,”
Nonlinear Anal.
70
,
2150
2164
(
2009
).
You do not currently have access to this content.