In this paper, we prove the existence of a positive solution with minimal energy for a planar Schrödinger-Poisson system, where the nonlinearity is a continuous function with exponential critical growth. We find this solution using a minimization technique on the Nehari manifold.
REFERENCES
1.
N.
Ackermann
, “On a periodic Schrödinger equation with nonlocal superlinear part
,” Math. Z.
248
, 248
–443
(2004
).2.
C. O.
Alves
, J. M.
Bezerra do Ó
, and O. H.
Miyagaki
, “On nonlinear perturbations of a periodic elliptic problem in involving critical growth
,” Nonlinear Anal.
45
, 849
–863
(2001
).3.
C. O.
Alves
and M. A. S.
Souto
, “Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains
,” Z. Angew. Math. Phys.
65
, 1153
–1166
(2014
).4.
A.
Azzollini
and A.
Pomponio
, “Ground state solutions for the nonlinear Schrödinger-Maxwell equations
,” J. Math. Anal. Appl.
345
, 90
–108
(2008
).5.
D.
Bonheure
, S.
Cingolani
, and J.
Van Schaftingen
, “The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate
,” J. Funct. Anal.
272
, 5255
–5281
(2017
).6.
D. M.
Cao
, “Nontrivial solution of semilinear elliptic equation with critical exponent in .
,” Commun. Partial Differ. Equations
17
, 407
–435
(1992
).7.
G.
Cerami
and G.
Vaira
, “Positive solutions for some non-autonomous Schrödinger-Poisson systems
,” J. Differ. Equations
248
, 521
–543
(2010
).8.
S.
Cingolani
, M.
Clapp
, and S.
Secchi
, “Multiple solutions to a magnetic nonlinear Choquard equation
,” Z. Angew. Math. Phys.
63
, 233
–248
(2012
).9.
S.
Cingolani
and T.
Weth
, “On the planar Schrödinger-Poisson system
,” Ann. I. Poincaré-AN
, 33
(1
), 169
–197
(2016
).10.
G. M.
Coclite
, “A multiplicity result for the nonlinear Schrödinger-Maxwell equations
,” Commun. Appl. Anal.
7
, 417
–423
(2003
).11.
T.
D’Aprile
and D.
Mugnai
, “Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations
,” Proc. R. Soc. Edinb. Sect. A
134
, 893
–906
(2004
).12.
T.
D’Aprile
and D.
Mugnai
, “Non-existence results for the coupled Klein-Gordon-Maxwell equations
,” Adv. Nonlinear Stud.
4
, 307
–322
(2004
).13.
P.
d’Avenia
, “Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations
,” Adv. Nonlinear Stud.
2
, 177
–192
(2002
).14.
I.
Ianni
and G.
Vaira
, “On concentration of positive bound states for the Schrödinger-Poisson problem with potentials
,” Adv. Nonlinear Stud.
8
, 573
–595
(2008
).15.
D. G.
de Figueiredo
, O. H.
Miyagaki
, and B.
Ruf
, “Elliptic equations in with nonlinearities in the critical growth range
,” Calc. Var.
3
, 139
–153
(1995
).16.
J. M.
Bezerra do Ó
, “N-Laplacian equations in with critical growth
,” Abstr. Appl. Anal.
2
, 301
–315
(1997
).17.
M.
Du
and T.
Weth
, “Ground states and high energy solutions of the planar Schrödinger-Poisson system
,” Nonlinearity
30
, 3492
–3515
(2017
).18.
P. L.
Lions
, “Solutions of Hartree-Fock equations for Coulomb systems
,” Commun. Math. Phys.
109
, 33
–97
(1984
).19.
P. L.
Lions
, “The concentration-compactness principle in the calculus of variations. The locally compact case, Part II
,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire
1
, 223
–283
(1984
).20.
E. H.
Lieb
, “Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities
,” Ann. Math.
118
, 349
–274
(1983
).21.
H.
Kikuchi
, “On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations
,” Nonlinear Anal.
67
, 1445
–1456
(2007
).22.
E. H.
Lieb
, “Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation
,” Stud. Appl. Math.
57
, 93
–105
(1977
).23.
L.
Ma
and L.
Zhao
, “Classification of positive solitary solutions of the nonlinear Choquard equation
,” Arch. Ration. Mech. Anal.
195
, 455
–467
(2010
).24.
V.
Moroz
and J.
Van Schaftingen
, “Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
,” J. Funct. Anal.
265
(2
), 153
–184
(2013
).25.
J.
Stubbe
, “Bound states of two-dimensional Schrödinger-Newton equations
,” e-print arXiv:0807.4059v1 (2008
).26.
F.
Zhao
and L.
Zhao
, “Positive solutions for Schrödinger-Poisson equations with a critical exponent
,” Nonlinear Anal.
70
, 2150
–2164
(2009
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.