The paper deals with a problem of asymptotic soliton-like solutions to the Benjamin-Bona-Mahony (BBM) equation with a small parameter at the highest derivative and variable coefficients depending on the variables x and t, as well as a small parameter. An algorithm for constructing solutions to the BBM equation has been proposed, and theorems on accuracy of such solutions have been proved.
REFERENCES
1.
N. J.
Zabusky
and M. D.
Kruskal
, “Interaction of solitons in a collisionless plasma and recurrence of initial states
,” Phys. Rev. Lett.
15
, 240
–243
(1965
).2.
M.
Wadati
, “The modified Korteweg-de Vries equation
,” J. Phys. Soc. Jpn.
34
(6
), 1289
–1296
(1973
).3.
M.
Toda
, Nonlinear Waves and Solitons
(Kluwer Academic Publishers
, Tokyo
, 1989
), p. 377
.4.
D. J.
Kaup
and A. C.
Newell
, “An exact solution for a derivative nonlinear Schrodinger equation
,” J. Math. Phys.
19
(4
), 798
–801
(1978
).5.
B. B.
Kadomtsev
and V. I.
Petviashvili
, “On the stability of solitary waves in weakly dispersive media
,” Sov. Phys. Dokl.
15
, 539
–541
(1970
), available at http://adsabs.harvard.edu/abs/1970SPhD...15..539K.6.
D. J.
Kaup
, “A higher-order water-wave equation and the method for solving it
,” Prog. Theor. Phys.
54
, 396
–408
(1975
).7.
C. S.
Gardner
, J. M.
Green
, M. D.
Kruskal
, and R. M.
Miura
, “Method for solving the Korteweg-de Vries equation
,” Phys. Rev. Lett.
19
, 1095
–1097
(1967
).8.
A. C.
Newell
, Nonlinear Wave Motion
, Lectures in Applied Mathematics (American Mathematical Society
, Providence
, 1974
), p. 229
.9.
S.
Novikov
, S. V.
Manakov
, L. P.
Pitaevskii
, and V. E.
Zakharov
, Theory of Solitons: The Inverse Scattering Method
(Springer
, Berlin
, 1984
), p. 276
.10.
G. R.
Lamb
, Jr., Elements of Soliton Theory
(John Wiley & Sons, Inc.
, New York
, 1980
), p. 289
.11.
F.
Calogero
and A.
Degasperis
, Spectral Transform and Solitons
(North-Holland
, Amsterdam
, 1982
), p. 516
.12.
R. K.
Dodd
, J. C.
Eilback
, J. D.
Gibbon
, and H. C.
Morris
, Solitons and Nonlinear Wave Equations
, 1st ed. (Academic Press
, 1982
), p. 630
.13.
L. D.
Faddeev
and L. A.
Takhtajan
, Hamiltonian Methods in the Theory of Solitons
(Springer
, Berlin
, 2007
), p. 592
.14.
A. K.
Prykarpatsky
, V. Hr.
Samoilenko
, R. I.
Andrushkiw
, Yu. O.
Mitropolsky
, and M. M.
Prytula
, “Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear dynamical systems. I
,” J. Math. Phys.
35
(4
), 1763
–1777
(1994
).15.
A. K.
Prykarpatskyj
, V. Hr.
Samoilenko
, and R. I.
Andrushkiw
, “Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear dynamical systems. II. The reduction via Dirac and canonical quantization procedure
,” J. Math. Phys.
35
(8
), 4088
–4116
(1994
).16.
A. K.
Prykarpatsky
and I. V.
Mykytiuk
, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects
(Kluwer Academic Publishers
, Dordrekht, Boston, London
, 1998
), p. 553
.17.
M. J.
Ablowitz
, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
(Cambridge University Press
, Cambridge
, 2011
), p. 348
.18.
D.
Blacmore
, A. K.
Prykarpatsky
, and V. Hr.
Samoylenko
, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Integrability Analysis
(World Scientific
, Singapore
, 2011
), p. 564
.19.
D. H.
Peregrin
, “Calculations of the development of an undular bore
,” J. Fluid Mech.
25
(2
), 321
–330
(1966
).20.
T. B.
Benjamin
, J. L.
Bona
, and J. J.
Mahony
, “Model equations for long waves in nonlinear dispersive systems
,” Philos. Trans. R. Soc., A
272
, 47
–78
(1972
).21.
A. R.
Seadway
and A.
Sayed
, “Travelling wave solutions of the Benjamine-Bona-Mahony water wave equations
,” Abstr. Appl. Anal.
2014
, 1
–7
.22.
J. C.
Eilback
and G. R.
McGruire
, “Numerical studies of the regularized long wave equation. I: Numerical methods
,” J. Comput. Phys.
19
, 43
–57
(1975
).23.
J. C.
Eilback
and G. R.
McGruire
, “Numerical studies of the regularized long wave equation. II: Interaction of solitary waves
,” J. Comput. Phys.
23
, 63
–73
(1977
).24.
A. R.
Santarelli
, “Numerical analysis of the regularized long-wave equation: Inelastic collision of solitary waves
,” Il Nuovo Cimento B Ser. 11
46
, 179
–188
(1978
).25.
Kh. O.
Abdulloyev
, I. L.
Bogolubsky
, and V. G.
Makhankov
, “One more example of inelastic soliton interaction
,” Phys. Lett. A
56
, 427
–428
(1976
).26.
J. L.
Bona
, W. G.
Pritchard
, and L. R.
Scott
, “Solitary wave interaction
,” Phys. Fluids
23
(3
), 438
–441
(1980
).27.
J. L.
Bona
, W. G.
Pritchard
, and L. R.
Scott
, “An evolution of a model equation for water waves
,” Philos. Trans. R. Soc., A
302
, 457
–510
(1981
).28.
R.
Arora
and A.
Kumar
, “Soliton solution for the BBM and MRLW equations by cosin-functions method
,” J. Appl. Math.
1
(2
), 59
–61
(2011
).29.
A. M.
Wazwaz
and M. A.
Helal
, “Nonlinear variants of the BBM equation with compact and noncompact physical structures
,” Chaos, Solitons Fractals
26
, 767
–776
(2005
).30.
G. A.
El
, M. A.
Hoefer
, and M.
Shearer
, “Expansion shock waves in regularized shallow-water theory
,” Proc. R. Soc. A
472
, 20160141
(2016
).31.
T.
Mizumachi
, “Asymptotic stability of solitary wave solution to the regularized long-wave equation
,” J. Differ. Equations
200
, 312
–341
(2004
).32.
B.
Wang
and W.
Yang
, “Finite-dimensional behaviour for the Benjamine-Bona-Mahony equation
,” J. Phys. A: Math. Gen.
30
, 4877
–4885
(1997
).33.
J.
Avrin
, “Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions
,” Nonlinear Anal.: Theory, Methods Appl.
9
(8
), 861
–865
(1985
).34.
V. Hr.
Samoylenko
and Yu. I.
Samoylenko
, “Asymptotic expansions for one-phase soliton-type solutions of the Korteweg-de Vries equation with variable coefficients
,” Ukr. Math. J.
57
(1
), 132
–148
(2005
).35.
V. Hr.
Samoylenko
and Yu. I.
Samoylenko
, “Asymptotic two-phase soliton like solutions of the singularly perturbed Korteweg-de Vries equation with variable coefficients
,” Ukr. Math. J.
60
(3
), 449
–461
(2008
).36.
V. Hr.
Samoylenko
and Yu. I.
Samoylenko
, “Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg-de Vries equation with variable coefficients
,” Ukr. Math. J.
64
(7
), 1109
–1127
(2012
).37.
A. H.
Nayfeh
, Introduction to Perturbation Techniques
(A Wiley-Interscience Publication
, New York, Chichester, Brisbane, Toronto
, 1993
), p. 519
.38.
S. Yu.
Dobrokhotov
and V. P.
Maslov
, “Finite-zone, almost-periodic solutions in WKB approximations
,” J. Sov. Math.
16
(6
), 1433
–1487
(1981
).39.
V. P.
Maslov
and G. A.
Omel’yanov
, “Asymptotic soliton-form solutions of equations with small dispersion
,” Russ. Math. Surv.
36
(3
), 73
–149
(1981
).40.
V. P.
Maslov
and G. A.
Omel’yanov
, Geometric Asymptotics for PDE. I
(American Mathematical Society
, Providence
, 2001
), p. 243
.41.
S. G.
Glebov
, O. M.
Kiselev
, and V. A.
Lazarev
, “Slow passage through resonance for a weakly nonlinear dispersive wave
,” SIAM J. Appl. Math.
65
(6
), 2158
–2177
(2005
).42.
L. A.
Kalyakin
, “Asymptotic analysis of the model of gyromagnetic autoresonance
,” Comput. Math. Math. Phys.
57
(2
), 281
–296
(2017
).43.
A. V.
Faminskii
, “Cauchy problem for the Korteweg-de Vries equation and its generalizations
,” J. Sov. Math.
50
(1
), 1381
–1420
(1990
).44.
R. M.
Miura
and M.
Kruskal
, “Application of non-linear WKB-method to the KdV equation
,” SIAM J. Appl. Math.
26
(3
), 376
–395
(1974
).45.
N. G.
de Bruijn
, Asymptotic Methods in Analysis
(North-Holland
, Amsterdam
, 1958
), p. 224
.46.
N. N.
Bogoliubov
and Yu. A.
Mitropolsky
, Asymptotic Methods in the Theory of Non-Linear Oscillations
(Gordon and Breach
, New York
, 1961
), p. 537
.47.
L. C.
Evans
, Partial Differential Equations
(American Mathematical Society
, Providence
, 1998
), p. 662
.48.
V. Hr.
Samoylenko
and Yu. I.
Samoylenko
, “Existence of a solution to the inhomogeneous equation with the one-dimensional Schrodinger operator in the space of quickly decreasing functions
,” J. Math. Sci.
187
(1
), 70
–76
(2012
).49.
G.
Teschl
, Ordinary Differential Equations and Dynamical Systems
(American Mathematical Society
, Providence
, 2012
), p. 353
.50.
S. I.
Pokhozhayev
, “On the singular solutions of the Korteweg-de Vries equation
,” Math. Notes
88
(5
), 741
–747
(2010
).51.
E. J.
Hruslov
, “Asymptotics of the solution of the Cauchy problem for the Korteweg-de Vries equation with initial data of step type
,” Math. USSR-Sb.
28
(2
), 229
–248
(1976
).52.
V. Hr.
Samoylenko
and Yu. I.
Samoylenko
, “Asymptotic multiphase Σ-solutions to the singularly perturbed Korteweg-de Vries equation with variable coefficients
,” J. Math. Sci.
200
(3
), 358
–373
(2014
).53.
V. Hr.
Samoilenko
and Yu. I.
Samoilenko
, “Asymptotic Σ–solutions of a singularly perturbed Benjamin-Bona-Mahony equation with variable coefficients
,” Ukr. Math. J.
70
(2
), 266
–287
(2018
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.