We describe a unified structure of rogue wave and multiple rogue wave solutions for all equations of the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and their mixed and deformed versions. The definition of the AKNS hierarchy and its deformed versions is given in the Sec. II. We also consider the continuous symmetries of the related equations and the related spectral curves. This work continues and summarises some of our previous studies dedicated to the rogue wave-like solutions associated with AKNS, nonlinear Schrödinger, and KP hierarchies. The general scheme is illustrated by the examples of small rank n, n 7, rational or quasi-rational solutions. In particular, we consider rank-2 and rank-3 quasi-rational solutions that can be used for prediction and modeling of the rogue wave events in fiber optics, hydrodynamics, and many other branches of science.

1.
Akhiezer
,
N. I.
,
Elements of the Theory of Elliptic Functions
, translated from the second Russian edition by
H. H.
McFaden
(
American Mathematical Society
,
Providence, RI
,
1990
).
2.
Akhmediev
,
N.
,
Ankiewicz
,
A.
, and
Taki
,
M.
,
Phys. Lett. A
373
,
675
(
2009
).
3.
Akhmediev
,
N.
,
Eleonskii
,
V.
, and
Kulagin
,
N.
,
Sov. Phys. JETP
62
,
894
(
1985
).
4.
Alfimov
,
G. L.
,
Its
,
A. R.
, and
Kulagin
,
N. E.
,
Theor. Math. Phys.
84
,
787
(
1990
).
5.
Ankiewicz
,
A.
and
Akhmediev
,
N.
,
Phys. Lett. A
378
,
358
(
2014
).
6.
Ankiewicz
,
A.
and
Akhmediev
,
N.
,
Phys. Rev. E
96
,
012219
(
2017
).
7.
Ankiewicz
,
A.
,
Kedziora
,
D. J.
,
Chowdury
,
A.
,
Bandelow
,
U.
, and
Akhmediev
,
N.
,
Phys. Rev. E
93
,
012206
(
2016
).
8.
Ankiewicz
,
A.
,
Soto-Crespo
,
J. M.
, and
Akhmediev
,
N.
,
Phys. Rev. E
81
,
046602
(
2010
).
9.
Appell
,
P.
,
Comptes Rendus
XCI
,
211
(
1880
).
10.
Baker
,
H. F.
,
Abel’s Theorem and The Allied Theory Including the Theory of Theta Functions
(
Cambridge
,
1897
).
11.
Belokolos
,
E. D.
,
Bobenko
,
A. I.
,
Enol’skii
,
V. Z.
,
Its
,
A. R.
, and
Matveev
,
V. B.
,
Algebro-Geometrical Approach to Nonlinear Evolution Equations
, Springer Series in Nonlinear Dynamics (
Springer
,
1994
), p.
337
.
12.
Chowdury
,
A.
,
Kedziora
,
D. J.
,
Ankiewicz
,
A.
, and
Akhmediev
,
N.
,
Phys. Rev. E
91
,
022919
(
2015
).
13.
Dai
,
C. Q.
and
Zhang
,
J. F.
,
J. Phys. A: Math. Gen.
39
,
723
(
2006
).
14.
Daniel
,
M.
,
Porsezian
,
K.
, and
Lakshmanan
,
M.
,
Phys. Lett. A
174
,
237
(
1993
).
15.
Dubard
,
P.
, “
Multirogue solutions to the focusing NLS equation
,” Ph.D. thesis,
2010
, https://tel.archives-ouvertes.fr/tel-00625446/document.
16.
Dubard
,
P.
,
Gaillard
,
P.
,
Klein
,
C.
, and
Matveev
,
V. B.
,
Eur. Phys. J.: Spec. Top.
185
,
247
(
2010
).
17.
Dubard
,
P.
and
Matveev
,
V. B.
,
Nat. Hazards Earth Syst. Sci.
11
,
667
(
2011
).
18.
Dubard
,
P.
and
Matveev
,
V. B.
,
Nonlinearity
26
,
R93
(
2013
).
19.
Dubrovin
,
B. A.
,
Russ. Math. Surv.
36
,
11
(
1981
).
20.
Eleonski
,
V. M.
,
Krichever
,
I. M.
, and
Kulagin
,
N. E.
,
Sov. Phys., Dokl.
31
,
226
(
1986
).
21.
Faddeev
,
L. D.
and
Takhtajan
,
L. A.
,
Classics in Mathematics
, Springer Series (
Springer
,
2007
), p.
585
.
22.
Farkas
,
H. M.
and
Kra
,
I.
,
Riemann Surfaces
(
Springer
,
New York
,
1980
).
23.
Gaillard
,
P.
,
Phys. Rev. E
88
,
042903
(
2013
).
24.
Gaillard
,
P.
,
J. Math. Phys
54
,
013505
(
2013
).
25.
Gesztesy
,
F.
and
Holden
,
H.
,
Soliton Equation and Their Algebro-Geometric Solutions: Volume 1, (1+1)-dimensional Continuous Models
, Volume 79 of Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
2003
), p.
505
.
26.
He
,
J. S.
,
Li
,
C. Z.
, and
Porsezian
,
K.
,
Phys. Rev. E
87
,
012913
(
2013
).
27.
Hirota
,
R.
,
J. Math. Phys.
14
,
805
(
1973
).
28.
Its
,
A. R.
and
Kotlyarov
,
V. P.
,
Dokl. Akad. Nauk Ukrain. SSR, Ser. A
11
,
965
(
1976
) (in Russian).
29.
Its
,
A. R.
and
Matveev
,
V. B.
,
Theor. Math. Phys.
23
,
343
(
1975
).
30.
Its
,
A. R.
,
Rybin
,
A. V.
, and
Sall’
,
M. A.
,
Theor. Math. Phys.
74
,
20
(
1988
).
31.
Kedziora
,
D.
,
Ankiewicz
,
A.
,
Chowdury
,
A.
, and
Akhmediev
,
N.
,
Chaos
25
,
103114
(
2015
).
32.
Kuznetsov
,
E. A.
,
Sov. Phys., Dokl.
22
,
507
(
1977
).
33.
Lakshmanan
,
M.
,
Porsezian
,
K.
, and
Daniel
,
M.
,
Phys. Lett. A
133
,
483
(
1988
).
34.
Li
,
L.
,
Wu
,
Z.
,
Wang
,
L.
, and
He
,
J.
,
Ann. Phys.
334
,
198
(
2013
).
35.
Ma
,
Y. C.
,
Stud. Appl. Math.
60
,
43
(
1979
).
36.
Manakov
,
S. V.
,
Zakharov
,
V. E.
,
Bordag
,
L. A.
,
Its
,
A. R.
, and
Matveev
,
V. B.
,
Phys. Lett. A
63
,
205
(
1977
).
37.
Matveev
,
V. B.
,
Lett. Math. Phys.
3
,
213
(
1979
).
38.
Matveev
,
V. B.
and
Smirnov
,
A. O.
,
Theor. Math. Phys.
186
,
156
(
2016
).
39.
Matveev
,
V. B.
,
Smirnov
,
A. O.
, and
Dubard
,
P.
,
Russ. J. Nonlinear Dyn.
11
,
219
(
2015
) (in Russian).
40.
Mumford
,
D.
,
Tata Lectures on Theta. I
, Volume 28 of Progress in Mathematics (
Birkhäuser Boston, Inc.
,
Boston, MA
,
1983
).
41.
Mumford
,
D.
,
Tata Lectures on Theta. II
, Volume 43 of Progress in Mathematics (
Birkhäuser Boston, Inc.
,
Boston, MA
,
1984
).
42.
Osborne
,
A. R.
,
Nonlinear Ocean Waves and The Inverse Scattering Transform
, Volume 97 of International Geophysics (
Academic Press
,
2010
), p.
917
.
43.
Peregrine
,
D. H.
,
J. Aust. Math. Soc., Ser. B: Appl. Math.
25
,
16
(
1983
).
44.
Porsezian
,
K.
,
Daniel
,
M.
, and
Lakshmanan
,
M.
,
J. Math. Phys.
33
,
1807
(
1992
).
45.
Smirnov
,
A. O.
,
Russ. Acad. Sci.: Sb. Math.
82
,
461
(
1995
).
46.
Smirnov
,
A. O.
,
Theor. Math. Phys.
107
,
568
(
1996
).
47.
Smirnov
,
A. O.
and
Golovachev
,
G. M.
,
Russ. J. Nonlinear Dyn.
9
,
389
(
2013
) (in Russian).
48.
Smirnov
,
A. O.
and
Matveev
,
V. B.
, “
Some comments on continuous symmetries of AKNS hierarchy equations and their solutions
,” preprint arXiv:1509.1134 (
2015
), p.
10
.
49.
Springer
,
G.
,
Introduction to Riemann Surfaces
(
Addison-Wesley
,
1957
).
50.
Wang
,
L. H.
,
Porsezian
,
K.
, and
He
,
J. S.
,
Phys. Rev. E
87
,
053202
(
2013
).
51.
Whittaker
,
E. T.
and
Watson
,
J. L.
,
Course of Modern Analysis
(
Cambridge University Press
,
1915
).
52.
Zakharov
,
V. E.
and
Faddeev
,
L. D.
,
Funct. Anal. Appl.
5
,
280
(
1971
).
You do not currently have access to this content.