In this paper, we study random lozenge tilings of non-convex polygonal regions. The interaction of the non-convexities (cuts) leads to new kernels and thus new statistics for the tiling fluctuations near these regions. This paper gives new probability distributions and joint probability distributions for the fluctuation of tiles along lines in between the cuts.

1.
M.
Adler
,
S.
Chhita
,
K.
Johansson
, and
P. van
Moerbeke
, “
Tacnode GUE-minor processes and double Aztec diamonds
,”
Probab. Theory Related Fields
162
(
1-2
),
275
325
(
2015
).
2.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Double Aztec diamonds and the tacnode process
,”
Adv. Math.
252
,
518
571
(
2014
).
3.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Tilings of non-convex polygons, skew-Young Tableaux and determinantal processes
,”
Commun. Math. Phys.
(published online,
2018
); e-print arXiv:1609.06995.
4.
M.
Adler
,
K.
Johansson
, and
P.
van Moerbeke
, “
Lozenge tilings of hexagons with cuts and asymptotic fluctuations: A new universality class
,”
Math. Phys. Anal. Geom.
21
,
1
53
(
2018
); e-print arXiv:1706.01055.
5.
M.
Adler
and
P.
van Moerbeke
, “
Coupled GUE-minor processes and domino tilings
,”
Int. Math. Res. Not.
2015
(
21
),
10987
11044
; e-print arXiv:1312.3859.
6.
A.
Borodin
and
M.
Duits
, “
Limits of determinantal processes near a tacnode
,”
Ann. Inst. Henri Poincare (B)
47
,
243
258
(
2011
).
7.
M.
Ciucu
and
I.
Fischer
, “
Lozenge tilings of hexagons with arbitrary dents
,”
Adv. Appl. Math.
73
,
1
22
(
2016
).
8.
H.
Cohn
,
M.
Larsen
, and
J.
Propp
, “
The shape of a typical boxed plane partition
,”
N. Y. J. Math.
4
,
137
165
(
1998
).
9.
E.
Duse
,
K.
Johansson
, and
A.
Metcalfe
, “
The Cusp-Airy process
,” e-print arXiv:1510.02057.
10.
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
, “
Alternating sign matrices and domino tilings, part I
,”
J. Algebraic Combin.
1
(
2
),
111
132
(
1992
).
11.
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
, “
Alternating sign matrices and domino tilings, part II
,”
J. Algebraic Combin.
1
(
2
),
219
234
(
1992
).
12.
K.
Johansson
, “
Non-intersecting paths, random tilings and random matrices
,”
Probab. Theory Related Fields
123
,
225
280
(
2002
).
13.
K.
Johansson
, “
Non-intersecting, simple, symmetric random walks and the extended Hahn kernel
,”
Ann. Inst. Fourier (Grenoble)
55
,
2129
2145
(
2005
).
14.
K.
Johansson
, “
The arctic circle boundary and the Airy process
,”
Ann. Probab.
33
,
1
30
(
2005
).
15.
K.
Johansson
and
E.
Nordenstam
, “
Eigenvalues of GUE minors
,”
Electron. J. Probab
11
,
1342
1371
(
2006
).
16.
V. E.
Gorin
, “
Bulk universality for random lozenge tilings near straight boundaries and for tensor products
,”
Commun. Math. Phys.
354
,
317
(
2017
); e-print arXiv:1603.02707.
17.
P. W.
Kasteleyn
, “
Graph theory and crystal physics
,” in
Graph Theory and Theoretical Physics
(
Academic Press
,
London
,
1967
), pp.
43
110
.
18.
W.
Jockush
,
J.
Propp
, and
P.
Shor
, “
Random domino tilings and the arctic circle theorem
,” preprint arXiv:math/9801068.
19.
R.
Kenyon
and
A.
Okounkov
, “
Limit shapes and the complex Burgers equation
,”
Acta Math.
199
(
2
),
263
302
(
2007
).
20.
R.
Kenyon
,
A.
Okounkov
, and
S.
Sheffield
, “
Dimers and Amoebae
,”
Ann. Math.
163
(
3
),
1019
1056
(
2006
).
21.
P. A.
MacMahon
, “
Memoir on the theory of the partition of numbers. Part V. Partitions in two-dimensional space
,”
Philos. Trans. R. Soc. A
211
,
75
(
1911
).
22.
A.
Okounkov
and
N.
Reshetikhin
, “
The birth of a random matrix
,”
Mosc. Math. J.
6
,
553
566
, 588 (
2006
).
23.
L.
Petrov
, “
Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field
,”
Ann. Probab.
43
,
1
43
(
2015
).
24.
J.
Propp
, “
Generalized domino-shuffling
,”
Theor. Comput. Sci.
303
(
2-3
),
267
301
(
2003
).
You do not currently have access to this content.