In this paper, we study random lozenge tilings of non-convex polygonal regions. The interaction of the non-convexities (cuts) leads to new kernels and thus new statistics for the tiling fluctuations near these regions. This paper gives new probability distributions and joint probability distributions for the fluctuation of tiles along lines in between the cuts.
REFERENCES
1.
M.
Adler
, S.
Chhita
, K.
Johansson
, and P. van
Moerbeke
, “Tacnode GUE-minor processes and double Aztec diamonds
,” Probab. Theory Related Fields
162
(1-2
), 275
–325
(2015
).2.
M.
Adler
, K.
Johansson
, and P.
van Moerbeke
, “Double Aztec diamonds and the tacnode process
,” Adv. Math.
252
, 518
–571
(2014
).3.
M.
Adler
, K.
Johansson
, and P.
van Moerbeke
, “Tilings of non-convex polygons, skew-Young Tableaux and determinantal processes
,” Commun. Math. Phys.
(published online, 2018
); e-print arXiv:1609.06995.4.
M.
Adler
, K.
Johansson
, and P.
van Moerbeke
, “Lozenge tilings of hexagons with cuts and asymptotic fluctuations: A new universality class
,” Math. Phys. Anal. Geom.
21
, 1
–53
(2018
); e-print arXiv:1706.01055.5.
M.
Adler
and P.
van Moerbeke
, “Coupled GUE-minor processes and domino tilings
,” Int. Math. Res. Not.
2015
(21
), 10987
–11044
; e-print arXiv:1312.3859.6.
A.
Borodin
and M.
Duits
, “Limits of determinantal processes near a tacnode
,” Ann. Inst. Henri Poincare (B)
47
, 243
–258
(2011
).7.
M.
Ciucu
and I.
Fischer
, “Lozenge tilings of hexagons with arbitrary dents
,” Adv. Appl. Math.
73
, 1
–22
(2016
).8.
H.
Cohn
, M.
Larsen
, and J.
Propp
, “The shape of a typical boxed plane partition
,” N. Y. J. Math.
4
, 137
–165
(1998
).9.
10.
N.
Elkies
, G.
Kuperberg
, M.
Larsen
, and J.
Propp
, “Alternating sign matrices and domino tilings, part I
,” J. Algebraic Combin.
1
(2
), 111
–132
(1992
).11.
N.
Elkies
, G.
Kuperberg
, M.
Larsen
, and J.
Propp
, “Alternating sign matrices and domino tilings, part II
,” J. Algebraic Combin.
1
(2
), 219
–234
(1992
).12.
K.
Johansson
, “Non-intersecting paths, random tilings and random matrices
,” Probab. Theory Related Fields
123
, 225
–280
(2002
).13.
K.
Johansson
, “Non-intersecting, simple, symmetric random walks and the extended Hahn kernel
,” Ann. Inst. Fourier (Grenoble)
55
, 2129
–2145
(2005
).14.
K.
Johansson
, “The arctic circle boundary and the Airy process
,” Ann. Probab.
33
, 1
–30
(2005
).15.
K.
Johansson
and E.
Nordenstam
, “Eigenvalues of GUE minors
,” Electron. J. Probab
11
, 1342
–1371
(2006
).16.
V. E.
Gorin
, “Bulk universality for random lozenge tilings near straight boundaries and for tensor products
,” Commun. Math. Phys.
354
, 317
(2017
); e-print arXiv:1603.02707.17.
P. W.
Kasteleyn
, “Graph theory and crystal physics
,” in Graph Theory and Theoretical Physics
(Academic Press
, London
, 1967
), pp. 43
–110
.18.
W.
Jockush
, J.
Propp
, and P.
Shor
, “Random domino tilings and the arctic circle theorem
,” preprint arXiv:math/9801068.19.
R.
Kenyon
and A.
Okounkov
, “Limit shapes and the complex Burgers equation
,” Acta Math.
199
(2
), 263
–302
(2007
).20.
R.
Kenyon
, A.
Okounkov
, and S.
Sheffield
, “Dimers and Amoebae
,” Ann. Math.
163
(3
), 1019
–1056
(2006
).21.
P. A.
MacMahon
, “Memoir on the theory of the partition of numbers. Part V. Partitions in two-dimensional space
,” Philos. Trans. R. Soc. A
211
, 75
(1911
).22.
A.
Okounkov
and N.
Reshetikhin
, “The birth of a random matrix
,” Mosc. Math. J.
6
, 553
–566
, 588 (2006
).23.
L.
Petrov
, “Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field
,” Ann. Probab.
43
, 1
–43
(2015
).24.
J.
Propp
, “Generalized domino-shuffling
,” Theor. Comput. Sci.
303
(2-3
), 267
–301
(2003
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.