We present a new approach to construct the separate variables basis leading to the full characterization of the transfer matrix spectrum of quantum integrable lattice models. The basis is generated by the repeated action of the transfer matrix itself on a generically chosen state of the Hilbert space. The fusion relations for the transfer matrix, stemming from the Yang-Baxter algebra properties, provide the necessary closure relations to define the action of the transfer matrix on such a basis in terms of elementary local shifts, leading to a separate transfer matrix spectral problem. Hence our scheme extends to the quantum case a key feature of the Liouville-Arnold classical integrability framework where the complete set of conserved charges defines both the level manifold and the flows on it leading to the construction of action-angle variables. We work in the framework of the quantum inverse scattering method. As a first example of our approach, we give the construction of such a basis for models associated with Y(gln) and argue how it extends to their trigonometric and elliptic versions. Then we show how our general scheme applies concretely to fundamental models associated with the Y(gl2) and Y(gl3) R-matrices leading to the full characterization of their spectrum. For Y(gl2) and its trigonometric deformation, a particular case of our method reproduces Sklyanin’s construction of separate variables. For Y(gl3), it gives new results, in particular, through the proper identification of the shifts acting on the separate basis. We stress that our method also leads to the full characterization of the spectrum of other known quantum integrable lattice models, including, in particular, trigonometric and elliptic spin chains, open chains with general integrable boundaries, and further higher rank cases that we will describe in forthcoming publications.
Skip Nav Destination
Article navigation
September 2018
Research Article|
September 24 2018
On quantum separation of variables
Special Collection:
In Memory of Ludwig Faddeev
J. M. Maillet
;
J. M. Maillet
a)
Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, UMR 5672
, F-69342 Lyon, France
Search for other works by this author on:
G. Niccoli
G. Niccoli
b)
Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, UMR 5672
, F-69342 Lyon, France
Search for other works by this author on:
J. Math. Phys. 59, 091417 (2018)
Article history
Received:
August 04 2018
Accepted:
August 13 2018
Citation
J. M. Maillet, G. Niccoli; On quantum separation of variables. J. Math. Phys. 1 September 2018; 59 (9): 091417. https://doi.org/10.1063/1.5050989
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00