We present a new approach to construct the separate variables basis leading to the full characterization of the transfer matrix spectrum of quantum integrable lattice models. The basis is generated by the repeated action of the transfer matrix itself on a generically chosen state of the Hilbert space. The fusion relations for the transfer matrix, stemming from the Yang-Baxter algebra properties, provide the necessary closure relations to define the action of the transfer matrix on such a basis in terms of elementary local shifts, leading to a separate transfer matrix spectral problem. Hence our scheme extends to the quantum case a key feature of the Liouville-Arnold classical integrability framework where the complete set of conserved charges defines both the level manifold and the flows on it leading to the construction of action-angle variables. We work in the framework of the quantum inverse scattering method. As a first example of our approach, we give the construction of such a basis for models associated with Y(gln) and argue how it extends to their trigonometric and elliptic versions. Then we show how our general scheme applies concretely to fundamental models associated with the Y(gl2) and Y(gl3) R-matrices leading to the full characterization of their spectrum. For Y(gl2) and its trigonometric deformation, a particular case of our method reproduces Sklyanin’s construction of separate variables. For Y(gl3), it gives new results, in particular, through the proper identification of the shifts acting on the separate basis. We stress that our method also leads to the full characterization of the spectrum of other known quantum integrable lattice models, including, in particular, trigonometric and elliptic spin chains, open chains with general integrable boundaries, and further higher rank cases that we will describe in forthcoming publications.

1.
V.
Arnold
,
Méthodes Mathématiques de la Mécanique Classique
(
MIR
,
Moscou
,
1976
).
2.
E. K.
Sklyanin
, “
The quantum Toda chain
,” in
Non-Linear Equations in Classical and Quantum Field Theory
, edited by
N.
Sanchez
(
Springer Berlin Heidelberg
,
1985
), pp.
196
233
.
3.
E. K.
Sklyanin
, “
Functional Bethe ansatz
,” in
Integrable and Superintegrable Systems
, edited by
B. A.
Kupershmidt
(
World Scientific
,
Singapore
,
1990
), pp.
8
33
.
4.
E. K.
Sklyanin
, “
Quantum inverse scattering method. Selected topics
,” in
Quantum Group and Quantum Integrable Systems
, Nankai Lectures in Mathematical Physics, edited by
M.-L.
Ge
(
World Scientific
,
1992
), pp.
63
97
.
5.
E. K.
Sklyanin
, “
Separation of variables in the classical integrable sl(3) magnetic chain
,”
Commun. Math. Phys.
150
,
181
191
(
1992
).
6.
E. K.
Sklyanin
, “
Separation of variables. New trends
,”
Prog. Theor. Phys. Suppl.
118
,
35
60
(
1995
).
7.
E. K.
Sklyanin
, “
Separation of variables in the quantum integrable models related to the Yangian [sl(3)]
,”
J. Math. Sci.
80
,
1861
1871
(
1996
).
8.
L. D.
Faddeev
and
E. K.
Sklyanin
, “
Quantum-mechanical approach to completely integrable field theory models
,”
Sov. Phys. Dokl.
23
,
902
904
(
1978
).
9.
L. D.
Faddeev
,
E. K.
Sklyanin
, and
L. A.
Takhtajan
. “
Quantum inverse problem method I
,”
Theor. Math. Phys.
40
,
688
706
(
1979
) .
L. D.
Faddeev
,
E. K.
Sklyanin
, and
L. A.
Takhtajan
. [
Translated from Teor. Mat. Fiz.
40
,
194
220
(
1979
)].
10.
L. A.
Takhtadzhan
and
L. D.
Faddeev
, “
The quantum method of the inverse problem and the Heisenberg XYZ model
,”
Russ. Math. Surv.
34
(
5
),
11
68
(
1979
).
11.
E. K.
Sklyanin
, “
Method of the inverse scattering problem and the non-linear quantum Schrödinger equation
,”
Sov. Phys. Dokl.
24
,
107
109
(
1979
).
12.
E. K.
Sklyanin
, “
On complete integrability of the Landau-Lifshitz equation
,” preprint LOMI E-3-79 (
1979
).
13.
L. D.
Faddeev
and
L. A.
Takhtajan
, “
Quantum inverse scattering method
,”
Sov. Sci. Rev. Math.
C1
,
107
(
1981
).
14.
E. K.
Sklyanin
, “
Quantum version of the inverse scattering problem method
,”
J. Sov. Math.
19
,
1546
1595
(
1982
).
15.
L. D.
Faddeev
, “
Integrable models in (1 + 1)-dimensional quantum field theory
,” in
Recent Advances in Field Theory and Statistical Mechanics
, edited by
J. B.
Zuber
and
R.
Stora
(
Elsevier Science Publications
,
1984
), Les Houches, 1982, pp.
561
608
.
16.
L. D.
Faddeev
,
How Algebraic Bethe Ansatz Works for Integrable Model
(
Les Houches Lectures
,
1996
).
17.
O.
Babelon
,
D.
Bernard
, and
F. A.
Smirnov
, “
Quantization of solitons and the restricted sine-Gordon model
,”
Commun. Math. Phys.
182
(
2
),
319
354
(
1996
).
18.
F. A.
Smirnov
, “
Structure of matrix elements in the quantum Toda chain
,”
J. Phys. A: Math. Gen.
31
(
44
),
8953
(
1998
).
19.
S. E.
Derkachov
,
G. P.
Korchemsky
, and
A. N.
Manashov
, “
Noncompact Heisenberg spin magnets from high–energy QCD. I. Baxter Q–operator and separation of variables
,”
Nucl. Phys. B
617
,
375
440
(
2001
).
20.
S. E.
Derkachov
,
G. P.
Korchemsky
, and
A. N.
Manashov
, “
Separation of variables for the quantum SL(2,R) spin chain
,”
J. High Energy Phys.
2003
(
07
),
047
.
21.
S. E.
Derkachov
,
G. P.
Korchemsky
, and
A. N.
Manashov
, “
Baxter Q-operator and separation of variables for the open SL(2,R) spin chain
,”
J. High Energy Phys.
2003
(
10
),
053
.
22.
A.
Bytsko
and
J.
Teschner
, “
Quantization of models with non–compact quantum group symmetry. Modular XXZ magnet and lattice sinh–Gordon model
,”
J. Phys. A: Math. Gen.
39
,
12927
(
2006
).
23.
G.
von Gehlen
,
N.
Iorgov
,
S.
Pakuliak
, and
V.
Shadura
, “
The Baxter–Bazhanov–Stroganov model: Separation of variables and the Baxter equation
,”
J. Phys. A: Math. Gen.
39
,
7257
(
2006
).
24.
H.
Frahm
,
A.
Seel
, and
T.
Wirth
, “
Separation of variables in the open XXX chain
,”
Nucl. Phys. B
802
,
351
367
(
2008
).
25.
L.
Amico
,
H.
Frahm
,
A.
Osterloh
, and
T.
Wirth
, “
Separation of variables for integrable spin-boson models
,”
Nucl. Phys. B
839
(
3
),
604
626
(
2010
).
26.
G.
Niccoli
and
J.
Teschner
, “
The sine-Gordon model revisited. I
,”
J. Stat. Mech.: Theory Exp.
2010
,
P09014
.
27.
G.
Niccoli
, “
Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models
,”
Nucl. Phys. B
835
,
263
283
(
2010
).
28.
G.
Niccoli
, “
Completeness of Bethe ansatz by Sklyanin SOV for cyclic representations of integrable quantum models
,”
J. High Energy Phys.
2011
(
3
),
123
.
29.
H.
Frahm
,
J. H.
Grelik
,
A.
Seel
, and
T.
Wirth
, “
Functional Bethe ansatz methods for the open XXX chain
,”
J. Phys. A: Math. Theor.
44
,
015001
(
2011
).
30.
N.
Grosjean
,
J. M.
Maillet
, and
G.
Niccoli
, “
On the form factors of local operators in the lattice sine-Gordon model
,”
J. Stat. Mech.: Theory Exp.
2012
,
P10006
.
31.
N.
Grosjean
and
G.
Niccoli
, “
The τ2-model and the chiral Potts model revisited: Completeness of Bethe equations from Sklyanin’s SOV method
,”
J. Stat. Mech.: Theory Exp.
2012
,
P11005
.
32.
G.
Niccoli
, “
Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: Complete spectrum and matrix elements of some quasi-local operators
,”
J. Stat. Mech.: Theory Exp.
2012
,
P10025
.
33.
G.
Niccoli
, “
Antiperiodic spin-1/2 XXZ quantum chains by separation of variables: Complete spectrum and form factors
,”
Nucl. Phys. B
870
,
397
420
(
2013
).
34.
G.
Niccoli
, “
An antiperiodic dynamical six-vertex model. I. Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic eight-vertex model
,”
J. Phys. A: Math. Theor.
46
,
075003
(
2013
).
35.
G.
Niccoli
, “
Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables
,”
J. Math. Phys.
54
,
053516
(
2013
).
36.
N.
Grosjean
,
J. M.
Maillet
, and
G.
Niccoli
, “
On the form factors of local operators in the Bazhanov-Stroganov and chiral Potts models
,”
Ann. Henri Poincaré
16
,
1103
(
2015
).
37.
S.
Faldella
and
G.
Niccoli
, “
SOV approach for integrable quantum models associated with general representations on spin-1/2 chains of the 8-vertex reflection algebra
,”
J. Phys. A: Math. Theor.
47
,
115202
(
2014
).
38.
N.
Kitanine
,
J. M.
Maillet
, and
G.
Niccoli
, “
Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables
,”
J. Stat. Mech.: Theory Exp.
2014
,
P05015
.
39.
G.
Niccoli
and
V.
Terras
, “
Antiperiodic XXZ chains with arbitrary spins: Complete eigenstate construction by functional equations in separation of variables
,”
Lett. Math. Phys.
105
,
989
1031
(
2015
).
40.
G.
Niccoli
and
V.
Terras
, “
The 8-vertex model with quasi-periodic boundary conditions
,”
J. Phys. A: Math. Theor.
49
,
044001
(
2016
).
41.
N.
Kitanine
,
J. M.
Maillet
,
G.
Niccoli
, and
V.
Terras
, “
The open XXX spin chain in the sov framework: Scalar product of separate states
,”
J. Phys. A: Math. Theor.
50
(
22
),
224001
(
2017
).
42.
J. M.
Maillet
,
G.
Niccoli
, and
B.
Pezelier
, “
Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra. I
,”
SciPost Phys.
2
,
009
(
2017
).
43.
D.
Martin
and
F.
Smirnov
, “
Problems with using separated variables for computing expectation values for higher ranks
,”
Lett. Math. Phys.
106
,
469
484
(
2016
).
44.
D. S.
Dummit
and
R. M.
Foote
,
Abstract Algebra
(
John Wiley and Sons, Inc.
,
2004
).
45.
F.
Smirnov
, “
Separation of variables for quantum integrable models related to Uq(slN)
,” e-print math-ph/0109013 (
2001
).
46.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1985
).
47.
Z.
Vavrin
, “
Confluent Cauchy and Cauchy-Vandermonde matrices
,”
Linear Algebra Appl.
258
,
271
293
(
1997
).
48.
N.
Kitanine
,
J. M.
Maillet
,
G.
Niccoli
, and
V.
Terras
, “
On determinant representations of scalar products and form factors in the SoV approach: The XXX case
,”
J. Phys. A: Math. Theor.
49
,
104002
(
2016
).
49.
S.
Faldella
,
N.
Kitanine
, and
G.
Niccoli
, “
Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms
,”
J. Stat. Mech.: Theory Exp.
2014
,
P01011
.
50.
D.
Levy-Bencheton
,
G.
Niccoli
, and
V.
Terras
, “
Antiperiodic dynamical 6-vertex model by separation of variables. II. Functional equation and form factors
,”
J. Stat. Mech.: Theory Exper.
2016
,
033110
.
51.
P. P.
Kulish
,
N. Yu.
Reshetikhin
, and
E. K.
Sklyanin
, “
Yang-Baxter equation and representation theory. I
,”
Lett. Math. Phys.
5
,
393
403
(
1981
).
52.
P. P.
Kulish
and
N. Yu.
Reshetikhin
, “
Gl3-invariant solutions of the Yang-Baxter equation and associated quantum systems
,”
J. Sov. Math.
34
,
1948
1971
(
1986
) .
P. P.
Kulish
and
N. Yu.
Reshetikhin
, [
Translated from Zap. Nauch. Sem.
LOMI
120
,
92
121
(
1982
)].
53.
E.
Mukhin
,
V.
Tarasov
, and
A.
Varchenko
, “
On separation of variables and completeness of the Bethe ansatz for quantum glN Gaudin model
,”
Glasgow Math. J.
51
,
137
145
(
2009
).
54.
E.
Mukhin
,
V.
Tarasov
, and
A.
Varchenko
, “
Schubert calculus and the representations of the general linear group
,”
J. Am. Math. Soc.
22
,
909
940
(
2009
).
55.
E.
Mukhin
,
V.
Tarasov
, and
A.
Varchenko
, “
The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz
,”
Ann. Math.
170
,
863
881
(
2009
).
56.
E.
Mukhin
,
V.
Tarasov
, and
A.
Varchenko
, “
Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representations of glN
,”
St. Petersburg Math. J.
22
,
463
472
(
2011
).
57.
D.
Maulik
and
A.
Okounkov
, “
Quantum groups and quantum cohomology
,” (to be published); e-print arxiv:1211.1287v3, p.
277
(in Astérisque).
58.
B.
Wouters
,
J.
De Nardis
,
M.
Brockmann
,
D.
Fioretto
,
M.
Rigol
, and
J.-S.
Caux
, “
Quenching the anisotropic heisenberg chain: Exact solution and generalized gibbs ensemble predictions
,”
Phys. Rev. Lett.
113
,
117202
(
2014
).
59.
E.
Ilievski
,
J.
De Nardis
,
B.
Wouters
,
J.-S.
Caux
,
F. H. L.
Essler
, and
T.
Prosen
, “
Complete generalized gibbs ensembles in an interacting theory
,”
Phys. Rev. Lett.
115
,
157201
(
2015
).
60.
B.
Bertini
,
M.
Collura
,
J.
De Nardis
, and
M.
Fagotti
, “
Emergent hydrodynamics in integrable quantum systems out of equilibrium
,”
Phys. Rev. Lett.
117
(
20
),
207201
(
2016
).
61.
O. A.
Castro-Alvaredo
,
D.
Benjamin
, and
T.
Yoshimura
, “
Emergent hydrodynamics in integrable quantum systems out of equilibrium
,”
Phys. Rev. X
6
,
041065
(
2016
).
62.
B.
Doyon
and
T.
Yoshimura
, “
A note on generalized hydrodynamics: Inhomogeneous fields and other concepts
,”
SciPost Phys.
2
,
014
(
2017
).
63.
S. E.
Derkachov
and
P. A.
Valinevich
, “
Separation of variables for the quantum SL(3,C) spin magnet: Eigenfunctions of Sklyanin B-operator
,” arXiv:1807.00302 [math-ph].
64.
N.
Gromov
,
F.
Levkovich-Maslyuk
, and
G.
Sizov
, “
New construction of eigenstates and separation of variables for SU(N) quantum spin chains
,”
J. High Energy Phys.
2017
(
9
),
111
.
65.
A.
Liashyk
and
N. A.
Slavnov
, “
On Bethe vectors in gl3 -invariant integrable models
,”
J. High Energy Phys.
2018
(
6
),
18
.
You do not currently have access to this content.