An extended analysis of links between linear differential equations and the nonlinear Painlevé equation PV I is given. For linear equations, second-order equations in different forms, as well as various first-order systems, are chosen. The role of an accessory parameter is explained. The relationship to the Schlesinger system is made clear.
REFERENCES
1.
R.
Fuchs
, “Über lineare homogene differentialgleitungen zweiter ordnung mit drei im endlichen gelegenen wesentlich singulären stellen
,” Math. Ann.
63
, 301
–321
(1907
).2.
R.
Garnier
, “Sur les équationes différentielles du troisiéme ordre dont l’intégrale générale est uniforme et sur une classe d’équationnes nouvelles d’ordre supérieur dont l’intégrale générale a ses points critique fixes
,” Ann. Sci. Éc. Norm. Supér.
29
, 1
–126
(1912
).3.
L.
Schlesinger
“Uber eine Klasse von differentialgleichungen beliebiger ordnung mit festen kritischen Punkten
,” J. Reine Angew. Math.
141
, 96
–145
(1912
).4.
T.
Jimbo
, K.
Miva
, and Ueno
, “Monodromie preserving deformations of linerar ordinary differential equations wit rational coefficients
,” Physica D
2
, 306
–352
(1981
).5.
T.
Jimbo
and K.
Miva
, “Monodromie preserving deformations of linerar ordinary differential equations with rational coefficients. II
,” Physica D
2
, 407
–448
(1981
).6.
T.
Jimbo
and K.
Miva
, “Monodromie preserving deformations of linerar ordinary differential equations with rational coefficients. III
,” Physica D
4
, 26
–46
(1981
).7.
S.
Slavyanov
, “Painleve equations as classical analogues of Heun equations
,” J. Phys. A: Math. Gen.
29
, 7329
–7335
(1996
).8.
S.
Slavyanov
, “Antiquantization and the corresponding symmetries
,” Theor. Math. Phys.
185
, 1522
–1526
(2015
).9.
S.
Slavyanov
, “Relations between linear equations and Painlevé’s equations
,” Constr. Approx.
39
, 75
–83
(2014
).10.
S.
Slavyanov
and O.
Stesik
, “Antiquantization of deformed Heun class equations
,” Theor. Math. Phys.
186
, 118
–125
(2016
).11.
A.
Bolibruch
, Inverse Problems of Monodromie in Analytical Theory of Differential Equations in Russian
(MNCMO
, Moscow
, 2009
).12.
A.
Its
and V.
Novokshenov
, The Isomonodromic Deformation Method in the Theory of Painlevé Equations
, Lecture Notes in Mathematics (Springer - Berlin
, New York
, 1986
), Vol. 1191.13.
A.
Kapaev
“Lax pairs for Painlevé equations
,” in Isomonodromic Deformations and Applications in Physics
, CRM Proceedings in Lecture Notes (American Mathematical Society
, Providence, Rhode Island
, 2002
), Vol. 31, pp. 37
–48
.14.
V.
Gromak
, I.
Laine
, and S.
Shimomura
, Painlevé Differential Equations in the Complex Domain
(De Gruyter Gmbx
, Berlin
, 2002
).15.
Painleve Equations and Related Topics
, edited by A.
Bruno
and A.
Bathin
(De Gruyter Gmbh
, Berlin, Boston
, 2012
).16.
S.
Slavyanov
and W.
Lay
, Special Functions: A Unified Theory Based on Singularities
(Oxford University Press
, Oxford, New York
, 2002
).17.
Heun’s Differential Equation
, edited by A.
Ronveau
(Oxford University Press
, Oxford, New York, Tokyo
, 1995
).18.
A.
Kazakov
and S.
Slavyanov
, “Symmetries of Heun equations and Okamoto transformations for Kovalevskaya-Painleve equations
,” Theor. Math. Phys.
155
, 721
–732
(2008
).19.
S.
Slavyanov
et al, “Generation and removing of apparent singularities in linear differential equations with polynoial coefficients
,” Theor. Math. Phys.
189
, 1726
–1733
(2016
).20.
S.
Slavyanov
, “Symmetries and apparent singularities for simplest fuchsian equations
,” Theor. Math. Phys.
193
, 1754
–1760
(2017
).21.
K.
Iwasaki
, H.
Kimura
, S.
Shimomura
, and M.
Iosida
, From Gauss to Painlevé. A Modern Theory of Special Functions
(Vieweg u Sohn
, Braunschweig
, 1991
).22.
M.
Babich
, “Isomonodromic deformations and Painlevé equations
,” Constr. Approx.
41
, 335
–356
(2015
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.