An extended analysis of links between linear differential equations and the nonlinear Painlevé equation PV I is given. For linear equations, second-order equations in different forms, as well as various first-order systems, are chosen. The role of an accessory parameter is explained. The relationship to the Schlesinger system is made clear.

1.
R.
Fuchs
, “
Über lineare homogene differentialgleitungen zweiter ordnung mit drei im endlichen gelegenen wesentlich singulären stellen
,”
Math. Ann.
63
,
301
321
(
1907
).
2.
R.
Garnier
, “
Sur les équationes différentielles du troisiéme ordre dont l’intégrale générale est uniforme et sur une classe d’équationnes nouvelles d’ordre supérieur dont l’intégrale générale a ses points critique fixes
,”
Ann. Sci. Éc. Norm. Supér.
29
,
1
126
(
1912
).
3.
L.
Schlesinger
Uber eine Klasse von differentialgleichungen beliebiger ordnung mit festen kritischen Punkten
,”
J. Reine Angew. Math.
141
,
96
145
(
1912
).
4.
T.
Jimbo
,
K.
Miva
, and
Ueno
, “
Monodromie preserving deformations of linerar ordinary differential equations wit rational coefficients
,”
Physica D
2
,
306
352
(
1981
).
5.
T.
Jimbo
and
K.
Miva
, “
Monodromie preserving deformations of linerar ordinary differential equations with rational coefficients. II
,”
Physica D
2
,
407
448
(
1981
).
6.
T.
Jimbo
and
K.
Miva
, “
Monodromie preserving deformations of linerar ordinary differential equations with rational coefficients. III
,”
Physica D
4
,
26
46
(
1981
).
7.
S.
Slavyanov
, “
Painleve equations as classical analogues of Heun equations
,”
J. Phys. A: Math. Gen.
29
,
7329
7335
(
1996
).
8.
S.
Slavyanov
, “
Antiquantization and the corresponding symmetries
,”
Theor. Math. Phys.
185
,
1522
1526
(
2015
).
9.
S.
Slavyanov
, “
Relations between linear equations and Painlevé’s equations
,”
Constr. Approx.
39
,
75
83
(
2014
).
10.
S.
Slavyanov
and
O.
Stesik
, “
Antiquantization of deformed Heun class equations
,”
Theor. Math. Phys.
186
,
118
125
(
2016
).
11.
A.
Bolibruch
,
Inverse Problems of Monodromie in Analytical Theory of Differential Equations in Russian
(
MNCMO
,
Moscow
,
2009
).
12.
A.
Its
and
V.
Novokshenov
,
The Isomonodromic Deformation Method in the Theory of Painlevé Equations
, Lecture Notes in Mathematics (
Springer - Berlin
,
New York
,
1986
), Vol. 1191.
13.
A.
Kapaev
Lax pairs for Painlevé equations
,” in
Isomonodromic Deformations and Applications in Physics
, CRM Proceedings in Lecture Notes (
American Mathematical Society
,
Providence, Rhode Island
,
2002
), Vol. 31, pp.
37
48
.
14.
V.
Gromak
,
I.
Laine
, and
S.
Shimomura
,
Painlevé Differential Equations in the Complex Domain
(
De Gruyter Gmbx
,
Berlin
,
2002
).
15.
Painleve Equations and Related Topics
, edited by
A.
Bruno
and
A.
Bathin
(
De Gruyter Gmbh
,
Berlin, Boston
,
2012
).
16.
S.
Slavyanov
and
W.
Lay
,
Special Functions: A Unified Theory Based on Singularities
(
Oxford University Press
,
Oxford, New York
,
2002
).
17.
Heun’s Differential Equation
, edited by
A.
Ronveau
(
Oxford University Press
,
Oxford, New York, Tokyo
,
1995
).
18.
A.
Kazakov
and
S.
Slavyanov
, “
Symmetries of Heun equations and Okamoto transformations for Kovalevskaya-Painleve equations
,”
Theor. Math. Phys.
155
,
721
732
(
2008
).
19.
S.
Slavyanov
 et al, “
Generation and removing of apparent singularities in linear differential equations with polynoial coefficients
,”
Theor. Math. Phys.
189
,
1726
1733
(
2016
).
20.
S.
Slavyanov
, “
Symmetries and apparent singularities for simplest fuchsian equations
,”
Theor. Math. Phys.
193
,
1754
1760
(
2017
).
21.
K.
Iwasaki
,
H.
Kimura
,
S.
Shimomura
, and
M.
Iosida
,
From Gauss to Painlevé. A Modern Theory of Special Functions
(
Vieweg u Sohn
,
Braunschweig
,
1991
).
22.
M.
Babich
, “
Isomonodromic deformations and Painlevé equations
,”
Constr. Approx.
41
,
335
356
(
2015
).
You do not currently have access to this content.