We define two tau functions, τ and , on moduli spaces of spectral covers of GL(n) Hitchin systems. Analyzing the properties of τ, we express the rational divisor class of the universal Hitchin’s discriminant in terms of standard generators of the rational Picard group of the moduli spaces of spectral covers with variable base. The function is used to compute the divisor of canonical 1-forms with multiple zeros.
REFERENCES
1.
W.
Abikoff
, The Real Analytic Theory of Teichmüller Space
, Lecture Notes in Mathematics (Springer
, Berlin
, 1980
), Vol. 820, p. 144
.2.
M.
Atiyah
, “The geometry and physics of knots
,” in Lezioni Lincee
(Cambridge University Press
, Cambridge
, 1990
), p. 78
.3.
M.
Bertola
, D.
Korotkin
, and C.
Norton
, “Symplectic geometry of the moduli space of projective structures in homological coordinates
,” Invent. Math.
210
, 859
–914
(2017
).4.
M.
Bainbridge
, D.
Chen
, Q.
Gendron
, S.
Grushevsky
, and M.
Moeller
, “Strata of k-differentials
,” J. Alg. Geom.
(to be published); e-print arXiv:1610.09238.5.
D.
Balducci
, “Donagi-Markman cubic for Hitchin systems
,” Math. Res. Lett.
13
, 923
–933
(2006
).6.
M.
Bertola
and D.
Korotkin
, “Hodge and Prym tau functions, Jenkins-Strebel differentials and combinatorial model of .
,” e-print arXiv:1804.02495.7.
U.
Bruzzo
and P.
Dalakov
, “Donagi-Markman cubic for the generalized Hitchin system
,” Int. J. Math.
25
(2
), 1450016
(2014
).8.
D.
Chen
, “Strata of abelian differentials and the Teichmller dynamics
,” J. Mod. Dyn.
7
(1
), 135
–152
(2013
).9.
R.
Donagi
, Spectral Covers
, Volume 28 of MSRI Series
(Cambridge University Press
, 1995
); e-print arXiv:alg-geom/9505009.10.
R.
Donagi
and E.
Markman
, “Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles
,” in Integrable Systems and Quantum Groups
(Montecatini Terme, 1993), Lecture Notes in Mathematics (Springer
, Berlin
, 1996
), Vol. 1620, p. 1119
.11.
A.
Douady
and J.
Hubbard
, “On the density of Strebel differentials
,” Invent. Math.
30
, 175
–179
(1975
).12.
B.
Dubrovin
, “Geometry of 2D topological field theories
,” in Integrable Systems and Quantum Groups
(Montecatini Terme, 1993), Lecture Notes in Mathematics (Springer
, Berlin
, 1996
), Vol. 1620, pp. 120
–348
.13.
B.
Dubrovin
, “Painlevé transcendents in two-dimensional topological field theory
,” in The Painlevé Property
, CRM Series in Mathematical Physics (Springer
, New York
, 1999
), pp. 287
–412
.14.
J.
Fay
, Theta Functions on Riemann Surfaces
, Lecture Notes in Mathematics (Springer
, Berlin
, 1973
), Vol. 352.15.
J.
Fay
, Kernel Functions, Analytic Torsion, and Moduli Spaces
, Memoirs of the American Mathematical Society (American Mathematical Society
, 1992
), Vol. 464.16.
N. J.
Hitchin
, “The self-duality equations on a Riemann surface
,” Proc. London Math. Soc.
3-55
(1
), 59
–126
(1987
).17.
N. J.
Hitchin
, “Stable bundles and integrable systems
,” Duke Math. J.
54
(1
), 91
–114
(1987
).18.
19.
J.
Hurtubise
, “The geometry of generalized Hitchin systems
,” in Integrable Systems: From Classical to Quantum
(Montral, QC, 1999), CRM Proceedings and Lecture Notes (American Mathematical Society
, Providence, RI
, 2000
), Vol. 26, pp. 55
–76
.20.
M.
Jimbo
, T.
Miwa
, and K.
Ueno
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I
,” Physica
2D
, 306
–352
(1981
);M.
Sato
, T.
Miwa
, and M.
Jimbo
, “Holonomic quantum fields II. The Riemann-Hilbert problem
,” Publ. RIMS, Kyoto Univ.
15
, 201
–278
(1979
).21.
A.
Kitaev
and D.
Korotkin
, “On solutions of Schlesinger equations in terms of theta-functions
,” Int. Math. Res. Not.
17
, 877
–905
(1998
).22.
A.
Kokotov
and D.
Korotkin
, “On G-function of Frobenius manifolds related to Hurwitz spaces
,” Int. Math. Res. Not.
2004
(7
), 343
–360
.23.
A.
Kokotov
and D.
Korotkin
, “Isomonodromic tau-function of Hurwitz Frobenius manifolds and its applications
,” Int. Math. Res. Not.
2006
, 18746
.24.
A.
Kokotov
and D.
Korotkin
, “Tau-functions on spaces of abelian differentials and higher genus generalization of Ray-Singer formula
,” J. Differ. Geom.
82
, 35
–100
(2009
).25.
A.
Kokotov
, D.
Korotkin
, and P.
Zograf
, “Isomonodromic tau function on the space of admissible covers
,” Adv. Math.
227
(1
), 586
–600
(2011
).26.
D.
Korotkin
, A.
Sauvaget
, and P.
Zograf
, “Tau functions, Prym-Tyurin classes and loci of degenerate differentials
,” e-print arXiv:1710.01239.27.
D.
Korotkin
and P.
Zograf
, “Tau function and moduli of differentials
,” Math. Res. Lett.
18
(3
), 447
–458
(2011
).28.
D.
Korotkin
and P.
Zograf
, “Tau function and the Prym class
,” in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices
, Contemporary Mathematics (American Mathematical Society
, Providence, RI
, 2013
), Vol. 593, pp. 241
–261
.29.
V. G.
Knizhnik
, “Multiloop amplitudes in the theory of quantum strings and complex geometry
,” Sov. Phys. Usp.
32
, 945
–971
(1989
).30.
M.
Kontsevich
and A.
Zorich
, “Connected components of the moduli spaces of holomorphic differentials with prescribed singularities
,” Invent. Math.
153
, 631
–678
(2003
).31.
D.
Korotkin
, “Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices
,” Math. Ann.
329
(2
), 335
–364
(2004
).32.
S.
Lando
and A.
Zvonkin
, Graphs on Surfaces and Their Applications, with an Appendix by Don B. Zagier
, Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology, II (Springer
, Berlin
, 2004
), Vol. 141, p. 455
.33.
B.
Malgrange
, “Sur les déformation isomonodromiques
,” in Mathématique et Physique
(E.N.S. Séminaire 1979-1982) (Birkhäuser
, Boston
, 1983
), pp. 401
–426
.34.
D.
Mumford
, Tata Lectures on Theta I, II
(Birkhäuser
, Boston
, 1983
), Vol. 84.35.
D.
Quillen
, “Determinants of Cauchy-Riemann operators over Riemann surface
,” Funct. Anal. Appl.
19
(1
), 31
–34
(1984
).36.
M.
Teixidor i Bigas
, “The divisor of curves with a vanishing theta-null
,” Compos. Math.
66
(1
), 15
–22
(1988
); available at http://www.numdam.org/item?id=CM_1988__66_1_15_0.37.
A. N.
Tyurin
, “On periods of quadratic differentials
,” Russ. Math. Surv.
33
(6
), 169
–221
(1978
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.