An element [Φ]GrnH+,F of the Grassmannian of n-dimensional subspaces of the Hardy space H+=H2, extended over the field F = C(x1, …, xn), may be associated to any polynomial basis ϕ = {ϕ0, ϕ1, ⋯ } for C(x). The Plücker coordinates Sλ,nϕ(x1,,xn) of [Φ], labeled by partitions λ, provide an analog of Jacobi’s bi-alternant formula, defining a generalization of Schur polynomials. Applying the recursion relations satisfied by the polynomial system ϕ to the analog {hi(0)} of the complete symmetric functions generates a doubly infinite matrix hi(j) of symmetric polynomials that determine an element [H]Grn(H+,F). This is shown to coincide with [Φ], implying a set of generalized Jacobi identities, extending a result obtained by Sergeev and Veselov [Moscow Math. J. 14, 161–168 (2014)] for the case of orthogonal polynomials. The symmetric polynomials Sλ,nϕ(x1,,xn) are shown to be KP (Kadomtsev-Petviashvili) τ-functions in terms of the power sums [x] of the xa’s, viewed as KP flow variables. A fermionic operator representation is derived for these, as well as for the infinite sums λSλ,nϕ([x])Sλ,nθ(t) associated to any pair of polynomial bases (ϕ, θ), which are shown to be 2D Toda lattice τ-functions. A number of applications are given, including classical group character expansions, matrix model partition functions, and generators for random processes.

1.
M.
Adler
and
P.
van Moerbeke
, “
Darboux transformations on band matrices, weights and associated polynomials
,”
Int. Math. Res. Not.
18
,
935
951
(
2001
).
2.
V.
Bazhanov
and
N.
Reshetikhin
, “
Restricted solid-on-solid models connected with simply laced algebras and conformal field theory
,”
J. Phys. A: Math. Gen.
23
,
1477
1492
(
1990
).
3.
M.
Bertola
,
B.
Eynard
, and
J.
Harnad
, “
Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions
,”
Commun. Math. Phys.
263
,
401
437
(
2006
).
4.
M.
Bertola
,
B.
Eynard
, and
J.
Harnad
, “
Differential systems for biorthogonal polynomials appearing in 2-matrix models, and the associated Riemann-Hilbert problem
,”
Commun. Math. Phys.
243
,
193
240
(
2003
).
5.
A.
Alexandrov
,
A.
Kazakov
,
S.
Leurent
,
Z.
Tsuboi
and
A.
Zabrodin
, “
Classical τ-function for quantum spin chains
,”
J. High Energy Phys.
09064
(
2013
).
6.
F.
Balogh
,
T.
Fonseca
, and
J.
Harnad
, “
Finite dimensional KP tau functions. I. Finite grassmanians
,”
J. Math. Phys.
55
(
8
),
083517
(
2014
).
7.
I.
Cherednik
, “
An analogue of the character formula for Hecke algebras
,”
Funct. Anal. Appl.
21
(
2
),
172
174
(
1987
).
8.
E.
Date
,
M.
Jimbo
,
M.
Kashiwara
, and
T.
Miwa
, “
Transformation groups for soliton equations
,” in
Nonlinear Integrable Systems-Classical Theory and Quantum Theory
, edited by
M.
Jimbo
and
T.
Miwa
(
World Scientific
,
1983
), pp.
39
120
.
9.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
, Volume 129 of Graduate Texts in Mathematics, Readings in Mathematics (
Springer-Verlag
,
New York
,
1991
).
10.
P.
Griffiths
and
J.
Harris
,
Principles of Algebraic Geometry
, 2nd ed. (
Wiley Classics Library John Wiley and Sons
,
New York
,
1994
).
11.
J.
Harnad
and
V. Z.
Enolski
, “
Schur function expansions of KPτ-functions associated to algebraic curves
,”
Russ. Math. Surv.
66
(
4
),
767
807
(
2011
)
J.
Harnad
and
V. Z.
Enolski
, [
Uspekhi Mat. Nauk.
66
(
4
),
137
178
(
2011
)].
12.
J.
Harnad
and
A. Yu.
Orlov
, “
Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions
,”
J. Phys. A: Math. Gen.
39
,
8783
8810
(
2006
).
13.
J.
Harnad
and
A. Yu.
Orlov
, “
Fermionic construction of partition functions for multimatrix models and the multicomponent Toda lattice hierarchy
,”
Theor. Math. Phys.
152
,
1099
1110
(
2007
).
14.
J.
Harnad
and
A. Yu.
Orlov
, “
Convolution symmetries of integrable hierarchies, matrix models and τ-functions
”, in
Random Matrix Theory, Interacting Particle Systems, and Integrable System
, edited by
P.
Deift
and
P.
Forrester
(
MSRI Publications
,
2014
), Vol. 65, pp.
247
275
.
15.
J.
Harnad
and
A. Yu.
Orlov
, “
Fermionic constructions of tau functions and random processes
,”
Physica D
235
,
168
206
(
2007
).
16.
K.
Koike
and
I.
Terada
, “
Young diagrammatic methods for the representation theory of classical groups
,”
J. Algebra
107
,
466
511
(
1987
).
17.
A.
Kuniba
,
Y.
Ohta
, and
J.
Suzuki
, “
Quantum Jacobi-Trudi and Giambelli formulae for U-q(B(r)(1)) from analytic Bethe ansatz
,”
J. Phys. A: Math. Gen.
28
,
6211
6226
(
1995
).
18.
M.
Jimbo
and
T.
Miwa
Solitons and infinite dimensional Lie algebras
,”
Publ. RIMS Kyoto Univ.
19
,
943
1001
(
1983
).
19.
D. E.
Littlewood
,
The Theory of Group Characters and Matrix Representations of Groups
, 2nd ed. (
Oxford University Press
,
London
,
1950
).
20.
I. G.
Macdonald
,
Symmetric Functions and Hall Polynomials
(
Clarendon Press
,
Oxford
,
1995
).
21.
I. G.
Macdonald
, “
Schur Functions: Theme and Variations
,” in
Actes 28e Séminaire Lotharingien
(
Publication I.R.M.A.
,
Strasbourg
,
1992
), pp.
5
39
.
22.
M.
Sato
, “
Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds
,”
RIMS, Kyoto Univ. Kokyuroku
439
,
30
46
(
1981
).
23.
M.
Sato
and
Y.
Sato
. “
Soliton equations as dynamical systems on infinite dimensional Grassmann manifold
,” in
Nonlinear PDE in Applied Science
, Proceedings of U.S.-Japan seminar, pp.
259
271
,
Kinokuniya
,
Tokyo
(
1983
).
24.
G.
Segal
and
G.
Wilson
, “
Loop groups and equations of KdV type
,”
Publ. Math l’IHES
6
,
5
65
(
1985
).
25.
A. N.
Sergeev
and
A. P.
Veselov
, “
Jacobi-Trudi formula for generalized Schur polynomials
,”
Moscow Math. J.
14
,
161
168
(
2014
).
You do not currently have access to this content.