We study local and global approximations of smooth nets of curvature lines and smooth conjugate nets by discrete nets (circular nets and planar quadrilateral nets, respectively) with edges of order ϵ. Both smooth and discrete geometries are described by integrable systems. It is shown that one can obtain an order ϵ2 approximation globally with points of the discrete nets on the smooth surface. A new simple geometric construction of principal directions of smooth surfaces is given.
REFERENCES
1.
A. A.
Akhmetshin
, I. M.
Krichever
, and Y. S.
Volvovski
, “Discrete analogs of the Darboux-Egoroff metrics
,” Proc. Steklov Inst. Math.
225
, 16
–39
(1999
).2.
3.
A. I.
Bobenko
, “Discrete conformal maps and surfaces
,” in Symmetries and Integrability of Difference Equations, Proceedings of the SIDE II Conference, Canterbury, July 1-5, 1996
, edited by P. A.
Clarkson
and F. W.
Nijhoff
(Cambridge University Press
, 1999
), pp. 97
–108
.4.
A. I.
Bobenko
and U.
Hertrich-Jeromin
, “Orthogonal nets and Clifford algebras
,” Tôhoku Math. Publ.
20
, 7
–22
(2001
).5.
A. I.
Bobenko
, D.
Matthes
, and Yu. B.
Suris
, “Discrete and smooth orthogonal systems: C∞-approximation
,” Int. Math. Res. Not.
2003
(45
), 2415
–2459
.6.
A. I.
Bobenko
and U.
Pinkall
, “Discretization of surfaces and integrable systems
,” in Discrete Integrable Geometry and Physics
, edited by A. I.
Bobenko
and R.
Seiler
(Clarendon Press
, Oxford
, 1999
), pp. 3
–58
.7.
A. I.
Bobenko
and U.
Pinkall
, “Discrete isothermic surfaces
,” J. Reine Andew. Math.
1996
(475
), 187
–208
.8.
A. I.
Bobenko
and Yu. B.
Suris
, Discrete Differential Geometry. Integrable Structure
, Graduate Studies in Mathematics (AMS
, Providence
, 2008
), Vol. 98, pp. xxiv + 404
.9.
J.
Cieśliński
, A.
Doliwa
, and P. M.
Santini
, “The integrable discrete analogues of orthogonal coordinate system are multi-dimensional circular lattices
,” Phys. Lett. A
235
, 480
–488
(1997
).10.
G.
Darboux
, Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal. T.I–IV
, 3rd ed. (Gauthier-Villars
, Paris
, 1914–1927
).11.
G.
Darboux
, Leçons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes
(Gauthier-Villars
, Paris
, 1910
).12.
A.
Doliwa
, S. V.
Manakov
, and P. M.
Santini
, “-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice
,” Commun. Math. Phys.
196
, 1
–18
(1998
).13.
A.
Doliwa
and P. M.
Santini
, “Multidimensional quadrilateral lattices are integrable
,” Phys. Lett. A
233
, 365
–372
(1997
).14.
B.
Dubrovin
, “Integrable systems in topological field theory
,” Nucl. Phys. B
379
, 627
–689
(1992
).15.
L. P.
Eisenhart
, Transformations of Surfaces
(Princeton University Press
, 1923
), pp. ix+379
.16.
J.
Goldfeather
and V.
Interrante
, “A novel cubic-order algorithm for approximating principal direction vectors
,” ACM Trans. Graphics
23
(1
), 45
–63
(2004
).17.
E. I.
Ganzha
and S. P.
Tsarev
, “An algebraic superposition formula and the completeness of Bäcklund transformations of (2 + 1)-dimensional integrable systems
,” Russ. Math. Surv.
51
, 1200
–1202
(1996
).18.
U.
Hertrich-Jeromin
, Introduction to Möbius Differential Geometry
(Cambridge University Press
, 2003
), pp. xii+413
.19.
F.
Kälberer
, M.
Nieser
, and K.
Polthier
, “Quadcover—Surface parameterization using branched coverings
,” Comput. Graphics Forum.
26
(3
), 375
–384
(2007
).20.
F.
Knöppel
, K.
Crane
, U.
Pinkall
, and P.
Schröder
, “Globally optimal direction fields
,” ACM Trans. Graphics
32
(4
), 59-1
–59-10
(2013
).21.
B. G.
Konopelchenko
and W. K.
Schief
, “Three-dimensional integrable lattices in Euclidean spaces: Conjugacy and orthogonality
,” Proc. R. Soc. London, Ser. A
454
, 3075
–3104
(1998
).22.
I. M.
Krichever
, “Algebraic-geometric n-orthogonal curvilinear coordinate systems and the solution of associativity equations
,” Funct. Anal. Appl.
31
, 25
–39
(1997
).23.
Y.
Liu
, H.
Pottmann
, J.
Wallner
, Y.
Yang
, and W.
Wang
, “Geometric modeling with conical meshes and developable surfaces
,” ACM Trans. Graphics
25
(3
), 681
–689
(2006
).24.
J.
Milnor
, in Morse Theory
, Annals of Mathematics Studies (Princeton University Press
, Princeton, NJ
, 1970
), Chap. VIII, Vol. 51, p. 153
.25.
S. P.
Novikov
, S. V.
Manakov
, L. P.
Pitaevskii
, and V. E.
Zakharov
, “Theory of solitons. The inverse scattering method
,” Contemporary Soviet Mathematics
(Consultants Bureau [Plenum]
, New York
, 1984
).26.
H.
Pottmann
, J.
Wallner
, Y.-L.
Yang
, Y.-K.
Lai
, and S.-M.
Hu
, “Principal curvatures from the integral invariant viewpoint
,” Comput. Aided Geom. Design
24
(8-9
), 428
–442
(2007
).27.
H.
Pottmann
, Y.
Liu
, J.
Wallner
, A.
Bobenko
, and W.
Wang
, “Geometry of multi-layer freeform structures for architecture
,” ACM Trans. Graphics
26
(3
), 65-1
–65-12
(2007
).28.
J.
Kuipers
, T.
Ueda
, J. A.
Vermaseren
, and J.
Vollinga
, “FORM version 4.0
,” Computer Physics Communications
184
(5
), 1453
–1467
(2013
).29.
V. I.
Zakharov
, “Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I. Integration of the Lame equations
,” Duke Math. J.
94
, 103
–139
(1998
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.