We prove a Fredholm determinant and short-distance series representation of the Painlevé V tau function τt associated with generic monodromy data. Using a relation of τt to two different types of irregular c = 1 Virasoro conformal blocks and the confluence from Painlevé VI equation, connection formulas between the parameters of asymptotic expansions at 0 and i∞ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as t → 0, +, i∞ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.

1.
V. A.
Alba
,
V. A.
Fateev
,
A. V.
Litvinov
, and
G. M.
Tarnopolsky
, “
On combinatorial expansion of the conformal blocks arising from AGT conjecture
,”
Lett. Math. Phys.
98
,
33
64
(
2011
); e-print arXiv:1012.1312 [hep-th].
2.
L. F.
Alday
,
D.
Gaiotto
, and
Y.
Tachikawa
, “
Liouville correlation functions from four-dimensional gauge theories
,”
Lett. Math. Phys.
91
,
167
197
(
2010
); e-print arXiv:0906.3219 [hep-th].
3.
F. V.
Andreev
and
A. V.
Kitaev
, “
Connection formulae for asymptotics of the fifth Painlevé transcendent on the real axis
,”
Nonlinearity
13
,
1801
1840
(
2000
).
4.
F. V.
Andreev
and
A. V.
Kitaev
, “
On connection formulas for asymptotics of some special solutions of the fifth Painlevé equation
,”
Zap. Nauchn. Semin. POMI
243
,
19
29
(
1997
).
5.
A. A.
Belavin
,
A. M.
Polyakov
, and
A. B.
Zamolodchikov
, “
Infinite conformal symmetry in two-dimensional quantum field theory
,”
Nucl. Phys. B
241
,
333
380
(
1984
).
6.
M.
Bershtein
and
A.
Shchechkin
, “
Bilinear equations on Painlevé tau functions from CFT
,”
Commun. Math. Phys.
339
,
1021
1061
(
2015
); e-print arXiv:1406.3008v5 [math-ph].
7.
G.
Bonelli
,
A.
Grassi
, and
A.
Tanzini
, “
Seiberg-Witten theory as a Fermi gas
,”
Lett. Math. Phys.
107
,
1
30
(
2016
); e-print arXiv:1603.01174 [hep-th].
8.
G.
Bonelli
,
O.
Lisovyy
,
K.
Maruyoshi
,
A.
Sciarappa
, and
A.
Tanzini
, “
On Painlevé/gauge theory correspondence
,”
Lett. Math. Phys.
107
,
2359
2413
(
2017
); e-print arXiv:1612.06235 [hep-th].
9.
G.
Bonelli
,
K.
Maruyoshi
, and
A.
Tanzini
, “
Wild quiver gauge theories
,”
J. High Energy Phys.
2012
,
31
; e-print arXiv:1112.1691 [hep-th].
10.
T.
Bothner
, “
A short note on the scaling function constant problem in the two-dimensional Ising model
,”
J. Stat. Phys.
170
,
672
(
2018
).
11.
T.
Bothner
,
A.
Its
, and
A.
Prokhorov
, “
On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential
,” e-print arXiv:1708.06480 [math-ph].
12.
M.
Cafasso
,
P.
Gavrylenko
, and
O.
Lisovyy
, “
Tau functions as Widom constants
,”
Commun. Math. Phys.
(to be published); e-print arXiv:1712.08546 [math-ph].
13.
B.
Carneiro da Cunha
and
F.
Novaes
, “
Kerr scattering coefficients via isomonodromy
,”
J. High Energy Phys.
2015
,
144
; e-print arXiv:1506.06588 [hep-th].
14.
B.
Carneiro da Cunha
,
M.
Carvalho de Almeida
, and
A.
Rabelo de Queiroz
, “
On the existence of monodromies for the Rabi model
,”
J. Phys. A: Math. Theor.
49
,
194002
(
2016
); e-print arXiv:1508.01342 [math-ph].
15.
L.
Chekhov
and
M.
Mazzocco
, “
Colliding holes in Riemann surfaces and quantum cluster algebras
,”
Nonlinearity
31
,
54
(
2018
); e-print arXiv:1509.07044 [math-ph].
16.
L.
Chekhov
,
M.
Mazzocco
, and
V.
Rubtsov
, “
Painlevé monodromy manifolds, decorated character varieties and cluster algebras
,”
Int. Math. Res. Not.
2017
,
7639
7691
; e-print arXiv:1511.03851v1 [math-ph].
17.
P.
Deift
,
I.
Krasovsky
, and
J.
Vasilevska
, “
Asymptotics for a determinant with a confluent hypergeometric kernel
,”
Int. Math. Res. Not.
2011
,
2117
2160
; e-print arXiv:1005.4226 [math-ph].
18.
Ph.
Di Francesco
,
P.
Mathieu
, and
D.
Sénéchal
,
Conformal Field Theory
(
Springer
,
1997
).
19.
A. S.
Fokas
,
A. R.
Its
,
A. A.
Kapaev
, and
V. Yu.
Novokshenov
,
Painlevé Transcendents: The Riemann-Hilbert Approach
, Mathematical Surveys and Monographs (
AMS
,
Providence, RI
,
2006
), Vol. 128.
20.
D.
Gaiotto
, “
Asymptotically free N=2 theories and irregular conformal blocks
,” e-print arXiv:0908.0307 [hep-th].
21.
D.
Gaiotto
and
J.
Teschner
, “
Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I
,”
J. High Energ. Phys.
2012
,
50
.
22.
O.
Gamayun
,
N.
Iorgov
, and
O.
Lisovyy
, “
Conformal field theory of Painlevé VI
,”
J. High Energy Phys.
2012
(
10
),
038
; e-print arXiv:1207.0787 [hep-th].
23.
O.
Gamayun
,
N.
Iorgov
, and
O.
Lisovyy
, “
How instanton combinatorics solves Painlevé VI, V and III’s
,”
J. Phys. A: Math. Theor.
46
,
335203
(
2013
); e-print arXiv:1302.1832 [hep-th].
24.
P.
Gavrylenko
and
O.
Lisovyy
, “
Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions
,”
Commun. Math. Phys.
(published online, 2018); e-print arXiv:1608.00958 [math-ph].
25.
P.
Gavrylenko
and
O.
Lisovyy
, “
Pure SU(2) gauge theory partition function and generalized Bessel kernel
,”
Proc. Symp. Pure Math.
98
,
181
205
(
2018
); e-print arXiv:1705.01869 [math-ph].
26.
A.
Grassi
and
J.
Gu
, “
Argyres-Douglas theories, Painlevé II and quantum mechanics
,” e-print arXiv:1803.02320 [hep-th].
27.
L.
Hadasz
,
Z.
Jaskolski
, and
M.
Piatek
, “
Analytic continuation formulae for the BPZ conformal block
,”
Acta Phys. Pol., B
36
,
845
864
(
2005
), http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=36&page=845; e-print arXiv:hep-th/0409258.
28.
N.
Iorgov
,
O.
Lisovyy
, and
J.
Teschner
, “
Isomonodromic tau-functions from Liouville conformal blocks
,”
Commun. Math. Phys.
336
,
671
694
(
2015
); e-print arXiv:1401.6104 [hep-th].
29.
N.
Iorgov
,
O.
Lisovyy
, and
Yu.
Tykhyy
, “
Painlevé VI connection problem and monodromy of c = 1 conformal blocks
,”
J. High Energy Phys.
2013
(
12
),
029
(
2013
); e-print arXiv:1308.4092v1 [hep-th].
30.
A. R.
Its
,
B.-Q.
Jin
, and
V. E.
Korepin
, “
Entropy of XY spin chain and block Toeplitz determinants
,” in
Universality and renormalization
, Fields Institute Communications (
AMS
,
2007
), Vol. 50, pp.
151
183
; e-print arXiv:quant-ph/0606178.
31.
A. R.
Its
,
O.
Lisovyy
, and
A.
Prokhorov
, “
Monodromy dependence and connection formulae for isomonodromic tau functions
,”
Duke Math. J.
167
,
1347
1432
(
2018
); e-print arXiv:1604.03082 [math-ph].
32.
A.
Its
,
O.
Lisovyy
, and
Yu.
Tykhyy
, “
Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks
,”
Int. Math. Res. Not.
2015
,
8903
8924
; e-print arXiv:1403.1235 [math-ph].
33.
A.
Its
and
A.
Prokhorov
, “
Connection problem for the tau-function of the Sine-Gordon reduction of Painlevé-III equation via the Riemann-Hilbert approach
,”
Int. Math. Res. Not.
2016
(
22
),
6856
6883
; e-print arXiv:1506.07485 [math-ph].
34.
A.
Its
and
A.
Prokhorov
, “
On some Hamiltonian properties of the isomonodromic tau functions
,”
Rev. Math. Phys.
30
,
1840008
(
2018
).
35.
M.
Jimbo
,
T.
Miwa
, and
K.
Ueno
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I
,”
Physica D
2
,
306
352
(
1981
).
36.
M.
Jimbo
, “
Monodromy problem and the boundary condition for some Painlevé equations
,”
Publ. Res. Inst. Math. Sci.
18
,
1137
1161
(
1982
).
37.
N.
Joshi
and
M.
Kruskal
, “
An asymptotic approach to the connection problem for the first and the second Painlevé equations
,”
Phys. Lett. A
130
,
129
137
(
1988
).
38.
N.
Joshi
and
E.
Liu
, “
Asymptotic behaviors given by elliptic functions in PIPV.
,”
Nonlinearity
31
,
3726
(
2018
); e-print arXiv:1712.00191v1 [nlin.SI].
39.
A. A.
Kapaev
and
A. V.
Kitaev
, “
Connection formulae for the first Painlevé transcendent in the complex domain
,”
Lett. Math. Phys.
27
,
243
252
(
1993
).
40.
O.
Lisovyy
and
J.
Roussillon
, “
On the connection problem for Painlevé I
,”
J. Phys. A: Math. Theor.
50
,
255202
(
2017
); e-print arXiv:1612.08382 [nlin.SI].
41.
W.-G.
Long
,
Z.-Y.
Zeng
, and
J.-R.
Zhou
, “
A note on the connection problem of some special Painlevé V functions
,” e-print arXiv:1601.00728v1 [math.CA].
42.
B. M.
McCoy
and
S.
Tang
, “
Connection formulae for Painlevé functions
,”
Physica D
18
,
190
196
(
1986
).
43.
B. M.
McCoy
and
S.
Tang
, “
Connection formulae for Painlevé V functions
,”
Physica D
19
,
42
72
(
1986
).
44.
B. M.
McCoy
and
S.
Tang
, “
Connection formulae for Painlevé V functions: II. The δ function bose gas problem
,”
Physica D
20
,
187
216
(
1986
).
45.
H.
Nagoya
, “
Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations
,”
J. Math. Phys.
56
,
123505
(
2015
); e-print arXiv:1505.02398v3 [math-ph].
46.
H.
Nagoya
, “
Conformal blocks and Painlevé functions
,” e-print arXiv:1611.08971 [math-ph].
47.
N. A.
Nekrasov
, “
Seiberg-Witten prepotential from instanton counting
,”
Adv. Theor. Math. Phys.
7
,
831
864
(
2003
); e-print arXiv:hep-th/0206161.
48.
F.
Novaes
and
B.
Carneiro da Cunha
, “
Isomonodromy, Painlevé transcendents and scattering off of black holes
,”
J. High Energy Phys.
2014
,
132
; e-print arXiv:1404.5188 [hep-th].
49.
B.
Ponsot
and
J.
Teschner
, “
Liouville bootstrap via harmonic analysis on a noncompact quantum group
,” e-print arXiv:hep-th/9911110.
50.
B.
Ponsot
and
J.
Teschner
, “
Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of Uq(sl(2,R)).
,”
Commun. Math. Phys.
224
,
613
655
(
2001
); e-print arXiv:math/0007097 [math.QA].
51.
S.
Shimomura
, “
Three-parameter solutions of the PV-Schlesinger equation near the point at infinity and the monodromy data
,” e-print arXiv:1804.10369 [math.CA].
52.
H.
Widom
, “
Asymptotic behavior of block Toeplitz matrices and determinants
,”
Adv. Math.
13
,
284
322
(
1974
).
53.
Al. B.
Zamolodchikov
,
Theor. Math. Phys.
73
,
103
110
(
1987
);
Al. B.
Zamolodchikov
, “
Conformal symmetry in two-dimensional space: Recursion representation of conformal block
,”
Theor. Math. Phys.
73
,
1088
1093
(
1987
).
54.
Z.-Y.
Zeng
and
Y.-Q.
Zhao
, “
Application of uniform asymptotics to the connection formulas of the fifth Painlevé equation
,” e-print arXiv:1501.00337v1 [math.CA].
You do not currently have access to this content.