We prove a Fredholm determinant and short-distance series representation of the Painlevé V tau function associated with generic monodromy data. Using a relation of to two different types of irregular c = 1 Virasoro conformal blocks and the confluence from Painlevé VI equation, connection formulas between the parameters of asymptotic expansions at 0 and i∞ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as t → 0, +∞, i∞ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.
REFERENCES
1.
V. A.
Alba
, V. A.
Fateev
, A. V.
Litvinov
, and G. M.
Tarnopolsky
, “On combinatorial expansion of the conformal blocks arising from AGT conjecture
,” Lett. Math. Phys.
98
, 33
–64
(2011
); e-print arXiv:1012.1312 [hep-th].2.
L. F.
Alday
, D.
Gaiotto
, and Y.
Tachikawa
, “Liouville correlation functions from four-dimensional gauge theories
,” Lett. Math. Phys.
91
, 167
–197
(2010
); e-print arXiv:0906.3219 [hep-th].3.
F. V.
Andreev
and A. V.
Kitaev
, “Connection formulae for asymptotics of the fifth Painlevé transcendent on the real axis
,” Nonlinearity
13
, 1801
–1840
(2000
).4.
F. V.
Andreev
and A. V.
Kitaev
, “On connection formulas for asymptotics of some special solutions of the fifth Painlevé equation
,” Zap. Nauchn. Semin. POMI
243
, 19
–29
(1997
).5.
A. A.
Belavin
, A. M.
Polyakov
, and A. B.
Zamolodchikov
, “Infinite conformal symmetry in two-dimensional quantum field theory
,” Nucl. Phys. B
241
, 333
–380
(1984
).6.
M.
Bershtein
and A.
Shchechkin
, “Bilinear equations on Painlevé tau functions from CFT
,” Commun. Math. Phys.
339
, 1021
–1061
(2015
); e-print arXiv:1406.3008v5 [math-ph].7.
G.
Bonelli
, A.
Grassi
, and A.
Tanzini
, “Seiberg-Witten theory as a Fermi gas
,” Lett. Math. Phys.
107
, 1
–30
(2016
); e-print arXiv:1603.01174 [hep-th].8.
G.
Bonelli
, O.
Lisovyy
, K.
Maruyoshi
, A.
Sciarappa
, and A.
Tanzini
, “On Painlevé/gauge theory correspondence
,” Lett. Math. Phys.
107
, 2359
–2413
(2017
); e-print arXiv:1612.06235 [hep-th].9.
G.
Bonelli
, K.
Maruyoshi
, and A.
Tanzini
, “Wild quiver gauge theories
,” J. High Energy Phys.
2012
, 31
; e-print arXiv:1112.1691 [hep-th].10.
T.
Bothner
, “A short note on the scaling function constant problem in the two-dimensional Ising model
,” J. Stat. Phys.
170
, 672
(2018
).11.
T.
Bothner
, A.
Its
, and A.
Prokhorov
, “On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo-Miwa-Ueno differential
,” e-print arXiv:1708.06480 [math-ph].12.
M.
Cafasso
, P.
Gavrylenko
, and O.
Lisovyy
, “Tau functions as Widom constants
,” Commun. Math. Phys.
(to be published); e-print arXiv:1712.08546 [math-ph].13.
B.
Carneiro da Cunha
and F.
Novaes
, “Kerr scattering coefficients via isomonodromy
,” J. High Energy Phys.
2015
, 144
; e-print arXiv:1506.06588 [hep-th].14.
B.
Carneiro da Cunha
, M.
Carvalho de Almeida
, and A.
Rabelo de Queiroz
, “On the existence of monodromies for the Rabi model
,” J. Phys. A: Math. Theor.
49
, 194002
(2016
); e-print arXiv:1508.01342 [math-ph].15.
L.
Chekhov
and M.
Mazzocco
, “Colliding holes in Riemann surfaces and quantum cluster algebras
,” Nonlinearity
31
, 54
(2018
); e-print arXiv:1509.07044 [math-ph].16.
L.
Chekhov
, M.
Mazzocco
, and V.
Rubtsov
, “Painlevé monodromy manifolds, decorated character varieties and cluster algebras
,” Int. Math. Res. Not.
2017
, 7639
–7691
; e-print arXiv:1511.03851v1 [math-ph].17.
P.
Deift
, I.
Krasovsky
, and J.
Vasilevska
, “Asymptotics for a determinant with a confluent hypergeometric kernel
,” Int. Math. Res. Not.
2011
, 2117
–2160
; e-print arXiv:1005.4226 [math-ph].18.
Ph.
Di Francesco
, P.
Mathieu
, and D.
Sénéchal
, Conformal Field Theory
(Springer
, 1997
).19.
A. S.
Fokas
, A. R.
Its
, A. A.
Kapaev
, and V. Yu.
Novokshenov
, Painlevé Transcendents: The Riemann-Hilbert Approach
, Mathematical Surveys and Monographs (AMS
, Providence, RI
, 2006
), Vol. 128.20.
D.
Gaiotto
, “Asymptotically free theories and irregular conformal blocks
,” e-print arXiv:0908.0307 [hep-th].21.
D.
Gaiotto
and J.
Teschner
, “Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I
,” J. High Energ. Phys.
2012
, 50
. 22.
O.
Gamayun
, N.
Iorgov
, and O.
Lisovyy
, “Conformal field theory of Painlevé VI
,” J. High Energy Phys.
2012
(10
), 038
; e-print arXiv:1207.0787 [hep-th].23.
O.
Gamayun
, N.
Iorgov
, and O.
Lisovyy
, “How instanton combinatorics solves Painlevé VI, V and III’s
,” J. Phys. A: Math. Theor.
46
, 335203
(2013
); e-print arXiv:1302.1832 [hep-th].24.
P.
Gavrylenko
and O.
Lisovyy
, “Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions
,” Commun. Math. Phys.
(published online, 2018); e-print arXiv:1608.00958 [math-ph].25.
P.
Gavrylenko
and O.
Lisovyy
, “Pure gauge theory partition function and generalized Bessel kernel
,” Proc. Symp. Pure Math.
98
, 181
–205
(2018
); e-print arXiv:1705.01869 [math-ph].26.
A.
Grassi
and J.
Gu
, “Argyres-Douglas theories, Painlevé II and quantum mechanics
,” e-print arXiv:1803.02320 [hep-th].27.
L.
Hadasz
, Z.
Jaskolski
, and M.
Piatek
, “Analytic continuation formulae for the BPZ conformal block
,” Acta Phys. Pol., B
36
, 845
–864
(2005
), http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=36&page=845; e-print arXiv:hep-th/0409258.28.
N.
Iorgov
, O.
Lisovyy
, and J.
Teschner
, “Isomonodromic tau-functions from Liouville conformal blocks
,” Commun. Math. Phys.
336
, 671
–694
(2015
); e-print arXiv:1401.6104 [hep-th].29.
N.
Iorgov
, O.
Lisovyy
, and Yu.
Tykhyy
, “Painlevé VI connection problem and monodromy of c = 1 conformal blocks
,” J. High Energy Phys.
2013
(12
), 029
(2013
); e-print arXiv:1308.4092v1 [hep-th].30.
A. R.
Its
, B.-Q.
Jin
, and V. E.
Korepin
, “Entropy of XY spin chain and block Toeplitz determinants
,” in Universality and renormalization
, Fields Institute Communications (AMS
, 2007
), Vol. 50, pp. 151
–183
; e-print arXiv:quant-ph/0606178.31.
A. R.
Its
, O.
Lisovyy
, and A.
Prokhorov
, “Monodromy dependence and connection formulae for isomonodromic tau functions
,” Duke Math. J.
167
, 1347
–1432
(2018
); e-print arXiv:1604.03082 [math-ph].32.
A.
Its
, O.
Lisovyy
, and Yu.
Tykhyy
, “Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks
,” Int. Math. Res. Not.
2015
, 8903
–8924
; e-print arXiv:1403.1235 [math-ph].33.
A.
Its
and A.
Prokhorov
, “Connection problem for the tau-function of the Sine-Gordon reduction of Painlevé-III equation via the Riemann-Hilbert approach
,” Int. Math. Res. Not.
2016
(22
), 6856
–6883
; e-print arXiv:1506.07485 [math-ph].34.
A.
Its
and A.
Prokhorov
, “On some Hamiltonian properties of the isomonodromic tau functions
,” Rev. Math. Phys.
30
, 1840008
(2018
).35.
M.
Jimbo
, T.
Miwa
, and K.
Ueno
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I
,” Physica D
2
, 306
–352
(1981
).36.
M.
Jimbo
, “Monodromy problem and the boundary condition for some Painlevé equations
,” Publ. Res. Inst. Math. Sci.
18
, 1137
–1161
(1982
).37.
N.
Joshi
and M.
Kruskal
, “An asymptotic approach to the connection problem for the first and the second Painlevé equations
,” Phys. Lett. A
130
, 129
–137
(1988
).38.
N.
Joshi
and E.
Liu
, “Asymptotic behaviors given by elliptic functions in .
,” Nonlinearity
31
, 3726
(2018
); e-print arXiv:1712.00191v1 [nlin.SI].39.
A. A.
Kapaev
and A. V.
Kitaev
, “Connection formulae for the first Painlevé transcendent in the complex domain
,” Lett. Math. Phys.
27
, 243
–252
(1993
).40.
O.
Lisovyy
and J.
Roussillon
, “On the connection problem for Painlevé I
,” J. Phys. A: Math. Theor.
50
, 255202
(2017
); e-print arXiv:1612.08382 [nlin.SI].41.
W.-G.
Long
, Z.-Y.
Zeng
, and J.-R.
Zhou
, “A note on the connection problem of some special Painlevé V functions
,” e-print arXiv:1601.00728v1 [math.CA].42.
B. M.
McCoy
and S.
Tang
, “Connection formulae for Painlevé functions
,” Physica D
18
, 190
–196
(1986
).43.
B. M.
McCoy
and S.
Tang
, “Connection formulae for Painlevé V functions
,” Physica D
19
, 42
–72
(1986
).44.
B. M.
McCoy
and S.
Tang
, “Connection formulae for Painlevé V functions: II. The δ function bose gas problem
,” Physica D
20
, 187
–216
(1986
).45.
H.
Nagoya
, “Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations
,” J. Math. Phys.
56
, 123505
(2015
); e-print arXiv:1505.02398v3 [math-ph].46.
47.
N. A.
Nekrasov
, “Seiberg-Witten prepotential from instanton counting
,” Adv. Theor. Math. Phys.
7
, 831
–864
(2003
); e-print arXiv:hep-th/0206161.48.
F.
Novaes
and B.
Carneiro da Cunha
, “Isomonodromy, Painlevé transcendents and scattering off of black holes
,” J. High Energy Phys.
2014
, 132
; e-print arXiv:1404.5188 [hep-th].49.
B.
Ponsot
and J.
Teschner
, “Liouville bootstrap via harmonic analysis on a noncompact quantum group
,” e-print arXiv:hep-th/9911110.50.
B.
Ponsot
and J.
Teschner
, “Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of .
,” Commun. Math. Phys.
224
, 613
–655
(2001
); e-print arXiv:math/0007097 [math.QA].51.
S.
Shimomura
, “Three-parameter solutions of the PV-Schlesinger equation near the point at infinity and the monodromy data
,” e-print arXiv:1804.10369 [math.CA].52.
H.
Widom
, “Asymptotic behavior of block Toeplitz matrices and determinants
,” Adv. Math.
13
, 284
–322
(1974
).53.
Al. B.
Zamolodchikov
, “Conformal symmetry in two-dimensional space: Recursion representation of conformal block
,” Theor. Math. Phys.
73
, 1088
–1093
(1987
).54.
Z.-Y.
Zeng
and Y.-Q.
Zhao
, “Application of uniform asymptotics to the connection formulas of the fifth Painlevé equation
,” e-print arXiv:1501.00337v1 [math.CA].© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.