This work constructs a well-defined and operational form factor expansion in a model having a massless spectrum of excitations. More precisely, the dynamic two-point functions in the massless regime of the XXZ spin-1/2 chain are expressed in terms of a properly regularised series of multiple integrals. These series are obtained by taking, in an appropriate way, the thermodynamic limit of the finite volume form factor expansions. The series are structured in a way allowing one to identify directly the contributions to the correlator stemming from the conformal-type excitations on the Fermi surface and those issuing from the massive excitations (deep holes, particles, and bound states). The obtained form factor series opens up the possibility of a systematic and exact study of asymptotic regimes of dynamical correlation functions in the massless regime of the XXZ spin 1/2 chain. Furthermore, the assumptions on the microscopic structure of the model’s Hilbert space that are necessary so as to write down the series appear to be compatible with any model—not necessarily integrable—belonging to the Luttinger liquid universality class. Thus, the present analysis also provides the phenomenological structure of form factor expansions in massless models belonging to this universality class.

1.
Aizenberg
,
I. A.
and
Yuzhakov
,
A. P.
,
Integral Representations and Residues in Multidimensional Complex Analysis
, Volume 58 of Graduate Texts in Mathematics (
American Mathematical Society
,
1978
).
2.
Arikawa
,
M.
,
Kabrach
,
M.
,
Müller
,
G.
, and
Wiele
,
K.
, “
Spinon excitations in the XX chain: Spectra, transition rates, observability
,”
J. Phys. A: Math. Gen.
39
,
10623
10640
(
2006
).
3.
Babujian
,
H. M.
,
Foerster
,
A.
, and
Karowski
,
M.
, “
The form factor program: A review and new results—the nested SU(N) off-shell Bethe Ansatz
,” in
Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory, Budapest, Hungary, 2006
[
SIGMA
2
,
082
(
2006
)].
4.
Barouch
,
E.
and
McCoy
,
B. M.
, “
Statistical mechanics of XY-model. 2. Spin-correlation functions
,”
Phys. Rev. A
3
,
786
804
(
1971
).
5.
Beck
,
H.
,
Bonner
,
J. C.
,
Müller
,
G.
, and
Thomas
,
H.
, “
Quantum spin dynamics of the antiferromagnetic linear chain in zero and nonzero magnetic field
,”
Phys. Rev. B
24
,
1429
1467
(
1981
).
6.
Bethe
,
H.
, “
Zür theorie der metalle: Eigenwerte und eigenfunktionen der linearen atomkette
,”
Z. Phys.
71
,
205
226
(
1931
).
7.
Bogoliubov
,
N. M.
,
Izergin
,
A. G.
, and
Korepin
,
V. E.
,
Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
1993
).
8.
Cardy
,
J. L.
, “
Operator content of two-dimensional conformally invariant theories
,”
Nucl. Phys. B
270
,
186
204
(
1986
).
9.
Colomo
,
F.
,
Izergin
,
A. G.
,
Korepin
,
V. E.
, and
Tognetti
,
V.
, “
Temperature correlation functions in the XX0 Heisenberg chain
,”
Theor. Math. Phys.
94
,
11
38
(
1993
).
10.
de Vega
,
H. J.
and
Woynarowich
,
F.
, “
Method for calculating finite size corrections in Bethe Ansatz systems—Heisenberg chains and 6-vertex model
,”
Nucl. Phys. B
251
,
439
456
(
1985
).
11.
Delfino
,
G.
,
Mussardo
,
G.
, and
Simonetti
,
P.
, “
Correlation functions along a massless flow
,”
Phys. Rev. D
51
,
R6620
R6624
(
1995
).
12.
des Cloizeaux
,
J.
and
Gaudin
,
M.
, “
Anisotropic linear magnetic chain
,”
J. Math. Phys.
7
,
1384
1400
(
1966
).
13.
J.
des Cloizeaux
and
Pearson
,
J. J.
, “
Spin-wave spectrum of the antiferromagnetic linear chain
,”
Phys. Rev.
128
,
2131
2135
(
1962
).
14.
Destri
,
C.
and
Lowenstein
,
J. H.
, “
Analysis of the Bethe Ansatz equations of the chiral invariant Gross-Neveu model
,”
Nucl. Phys. B
205
,
369
385
(
1982
).
15.
Dugave
,
M.
,
Göhmann
,
F.
, and
Kozlowski
,
K. K.
, “
Functions characterizing the ground state of the XXZ spin-1/2 chain in the thermodynamic limit
,”
SIGMA
10
,
043
(
2014
).
16.
Faddeev
,
L. D.
and
Takhtadzhan
,
L. A.
, “
What is the spin of a spin wave?
,”
Phys. Lett. A
85
,
375
377
(
1981
).
17.
Fowler
,
M.
and
Zotos
,
X.
, “
Quantum sine-Gordon thermodynamics: The Bethe Ansatz method
,”
Phys. Rev. B
24
,
2634
2639
(
1981
).
18.
Göhmann
,
F.
,
Klümper
,
A.
, and
Seel
,
A.
, “
Integral representations for correlation functions of the XXZ chain at finite temperature
,”
J. Phys. A: Math. Gen.
37
,
7625
7652
(
2004
).
19.
Hida
,
K.
, “
Rigorous derivation of the distribution of the eigenstates of the quantum Heisenberg-Ising chain with XY-like anisotropy
,”
Phys. Lett. A
84
,
338
340
(
1981
).
20.
Ishimura
,
N.
and
Shiba
,
H.
, “
Effect of the magnetic field on the des Cloizeaux-Pearson spin wave spectrum
,”
Prog. Theor. Phys.
57
,
1862
1873
(
1977
).
21.
Its
,
A. R.
,
Izergin
,
A. G.
,
Korepin
,
V. E.
, and
Slavnov
,
N. A.
, “
Differential equations for quantum correlation functions
,”
Int. J. Mod. Phys. B
4
,
1003
1037
(
1990
).
22.
Its
,
A. R.
and
Slavnov
,
N. A.
, “
On the Riemann-Hilbert approach to the asymptotic analysis of the correlation functions of the quantum nonlinear schrödinger equation. Non-free fermion case
,”
Theor. Math. Phys.
119
(
2
),
541
593
(
1990
).
23.
Jimbo
,
M.
and
Miwa
,
T.
, “
QKZ equation with ∣q∣ = 1 and correlation functions of the XXZ model in the gapless regime
,”
J. Phys. A
29
,
2923
2958
(
1996
).
24.
Jimbo
,
M.
,
Miwa
,
T.
,
Mori
,
Y.
, and
Sato
,
M.
, “
Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent
,”
Physica D
1
,
80
158
(
1980
).
25.
Karowski
,
M.
and
Weisz
,
P.
, “
Exact form factors in (1 + 1)-dimensional field theoretic models with soliton behaviour
,”
Nucl. Phys. B
139
,
455
476
(
1978
).
26.
Kaufman
,
B.
and
Onsager
,
L.
, “
Crystal statistics. III. Short-range order in a binary Ising lattice
,”
Phys. Rev.
76
,
1244
1252
(
1949
).
27.
Kerov
,
S.
,
Olshanski
,
G.
, and
Vershik
,
A.
, “
Harmonic analysis on the infinite symmetric group. A deformation of the regular representation
,”
C. R. Acad. Sci. Paris, Sér I
316
,
773
778
(
1993
).
28.
Kirillov
,
A. N.
and
Smirnov
,
F. A.
, “
A representation of the current algebra connected with the SU (2)-invariant thirring model
,”
Phys. Lett. B
198
,
506
510
(
1987
).
29.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
Algebraic Bethe Ansatz approach to the asymptotics behavior of correlation functions
,”
J. Stat. Mech.: Theory Exp.
2009
(
04
),
P04003
.
30.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain
,”
J. Math. Phys.
50
,
095209
(
2009
).
31.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
A form factor approach to the asymptotic behavior of correlation functions in critical models
,”
J. Stat. Mech.: Theory Exp.
2011
,
P12010
.
32.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
,”
J. Stat. Mech.: Theory Exp.
2011
,
P05028
.
33.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
Form factor approach to dynamical correlation functions in critical models
,”
J. Stat. Mech.: Theory Exp.
2012
,
P09001
.
34.
Kitanine
,
N.
,
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
, and
Terras
,
V.
, “
Long-distance asymptotic behaviour of multi-point correlation functions in massless quantum integrable models
,”
J. Stat. Mech.: Theory Exp.
2014
,
P05011
.
35.
Kitanine
,
N.
,
Maillet
,
J.-M.
,
Slavnov
,
N. A.
, and
Terras
,
V.
, “
Dynamical correlation functions of the XXZ spin-1/2 chain
,”
Nucl. Phys. B
729
,
558
580
(
2005
).
36.
Kitanine
,
N.
,
Maillet
,
J.-M.
, and
Terras
,
V.
, “
Form factors of the XXZ Heisenberg spin-1/2 finite chain
,”
Nucl. Phys. B
554
,
647
678
(
1999
).
37.
Kitanine
,
N.
,
Maillet
,
J.-M.
, and
Terras
,
V.
, “
Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field
,”
Nucl. Phys. B
567
,
554
582
(
2000
).
38.
Klümper
,
A.
and
Batchelor
,
M. T.
, “
An analytic treatment of finite-size corrections of the spin-1 antiferromagnetic XXZ chain
,”
J. Phys. A: Math. Gen.
23
,
L189
(
1990
).
39.
Kojima
,
T.
,
Korepin
,
V. E.
, and
Slavnov
,
N. A.
, “
Determinant representation for dynamical correlation functions of the quantum nonlinear Schrödinger equation
,”
Commun. Math. Phys.
188
,
657
689
(
1997
).
40.
Korepin
,
V. E.
, “
Direct calculation of the S-matrix in the massive thirring model
,”
Theor. Math. Phys.
41
,
953
967
(
1979
).
41.
Korepin
,
V. E.
and
Slavnov
,
N. A.
, “
The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor I.
,”
Commun. Math. Phys.
129
,
103
113
(
1990
).
42.
Korepin
,
V. E.
and
Slavnov
,
N. A.
, “
The new identity for the scattering matrix of exactly solvable models
,”
Eur. Phys. J. B
5
,
555
557
(
1998
).
43.
Kozlowski
,
K. K.
, “
Riemann–Hilbert approach to the time-dependent generalized sine kernel
,”
Adv. Theor. Math. Phys.
15
,
1655
1743
(
2011
).
44.
Kozlowski
,
K. K.
, “
Large-distance and long-time asymptotic behavior of the reduced denisty matrix in the non-linear Schrödinger model
,”
Ann. Henri Poincare
16
,
437
534
(
2015
).
45.
Kozlowski
,
K. K.
, “
Form factors of bound states in the XXZ chain
,”
J. Phys. A: Math. Theor.
50
,
184002
(
2017
). Special Issue “Emerging talents.”
46.
Kozlowski
,
K. K.
, “
On condensation properties of Bethe roots associated with the XXZ chain
,”
Commun. Math. Phys.
357
(
3
),
1009
1069
(
2018
).
47.
Kozlowski
,
K. K.
, “
On string solutions to the Bethe equations for the XXZ chain: A rigorous approach
” (to be published).
48.
Kozlowski
,
K. K.
,
Maillet
,
J.-M.
, and
Slavnov
,
N. A.
, “
Low-temperature limit of the long-distance asymptotics in the non-linear Schrödinger model
,”
J. Stat. Mech.: Theory Exp.
2011
,
P03019
.
49.
Kozlowski
,
K. K.
and
Maillet
,
J. M.
, “
Microscopic approach to a class of 1D quantum critical models
,”
J. Phys. A: Math and Theor.
48
,
484004
(
2015
). Baxter anniversary special issue.
50.
Kozlowski
,
K. K.
and
Ragoucy
,
E.
, “
Asymptotic behaviour of two-point functions in multi-species models
,”
Nucl. Phys. B
906
,
241
(
2016
).
51.
Kozlowski
,
K. K.
and
Terras
,
V.
, “
Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrödinger model
,”
J. Stat. Mech.: Theory Exp.
2011
,
P09013
.
52.
Lesage
,
F.
and
Saleur
,
H.
, “
Form-factors computation of Friedel oscillations in Luttinger liquids
,”
J. Phys. A: Math. Gen.
30
,
L457
L463
(
1997
).
53.
Lesage
,
F.
,
Saleur
,
H.
, and
Skorik
,
S.
, “
Form factors approach to current correlations in one-dimensional systems with impurities
,”
Nucl. Phys. B
474
,
602
640
(
1996
).
54.
Lieb
,
E. H.
,
Mattis
,
D. C.
, and
Schultz
,
T. D.
, “
Two dimensionnal Ising model as a soluble problem of many fermions
,”
Rev. Mod. Phys.
36
,
856
871
(
1964
).
55.
McCoy
,
B. M.
, “
Spin correlation functions in the XY model
,”
Phys. Rev.
173
,
531
541
(
1968
).
56.
McCoy
,
B. M.
,
Perk
,
J. H. H.
, and
Shrock
,
R. E.
, “
Time-dependent correlation functions of the transverse Ising chain at the critical magnetic field
,”
Nucl. Phys. B
220
,
35
47
(
1983
).
57.
Mejean
,
P.
and
Smirnov
,
F. A.
, “
Form factors for principal chiral field model with wess-zumino-novikov-witten term
Int. J. Mod. Phys. A
12
,
3383
3395
(
1997
).
58.
Müller
,
G.
and
Shrock
,
R. E.
, “
Dynamic correlation functions for one-dimensional quantum-spin systems: New results based on a rigorous approach
,”
Phys. Rev. B
29
,
288
301
(
1984
).
59.
Olshanski
,
G.
, “
Point processes and the infinite symmetric group. Part I: The general formalism and the density function
,” in
The Orbit Method in Geometry and Physics: In Honor of A. A. Kirillov
, Volume 213 of Progress in Mathematics, edited by
Duval
,
C.
,
Guieu
,
L.
, and
Ovsienko
,
V.
(
Birkhäuser, Verlag
,
Basel
,
2003
).
60.
Orbach
,
R.
, “
Linear antiferromagnetic chain with anisotropic coupling
,”
Phys. Rev.
112
,
309
316
(
1958
).
61.
Perk
,
J. H. H.
and
Au-Yang
,
H.
, “
New results for time-dependent correlation functions in the transverse ising chain
,”
J. Stat. Phys.
135
,
599
619
(
2009
).
62.
Ponsot
,
B.
, “
Massless N = 1 super-sinh-Gordon: Form factors approach
,”
Phys. Lett.
575
,
131
136
(
2003
).
63.
Sakai
,
K.
, “
Dynamical correlation functions of the XXZ model at finite temperature
,”
J. Phys. A: Math. Theor.
40
,
7523
7542
(
2007
).
64.
Slavnov
,
N. A.
, “
Non-equal time current correlation function in a one-dimensional Bose gas
,”
Theor. Math. Phys.
82
,
273
282
(
1990
).
65.
Slavnov
,
N. A.
, “
Differential equations for multipoint correlation functions in a one-dimensional impenetrable Bose gas
,”
Theor. Math. Phys.
106
,
131
142
(
1996
).
66.
Slavnov
,
N. A.
, “
Integral equations for the correlation functions of the quantum one-dimensional Bose gas
,”
Theor. Math. Phys.
121
,
1358
1376
(
1999
).
67.
Smirnov
,
F. A.
, “
Reductions of the sine-Gordon model as a perturbation of minimal models of conformal field theory
,”
Nucl. Phys. B
337
,
156
180
(
1990
).
68.
Smirnov
,
F. A.
, “
Form factors in completely integrable models of quantum field theory
,”
Advanced Series in Mathematical Physics
, (
World Scientific
,
1992
), Vol. 14.
69.
Takahashi
,
M.
,
Thermodynamics of One Dimensional Solvable Models
(
Cambridge university press
,
1999
).
70.
Takahashi
,
M.
and
Suzuki
,
M.
, “
One-dimensional anisotropic Heisenberg model at finite temperatures
,”
Prog. Theor. Phys.
48
,
2187
2209
(
1972
).
71.
Tracy
,
C. A.
and
Vaidya
,
H. G.
, “
Transverse time-dependent spin correlation functions of the one-dimensional XY model at zero temperature
,”
Physica A
92
,
1
41
(
1978
).
72.
Wu
,
T. T.
,
McCoy
,
B. M.
,
Tracy
,
C. A.
, and
Barouch
,
E.
, “
The spin-spin correlation function of the two dimensional ising model: Exact results in the scaling region
,”
Phys. Rev. B
13
,
316
(
1976
).
You do not currently have access to this content.