We study piecewise polynomial functions γk(c) that appear in the asymptotics of averages of the divisor sum in short intervals. Specifically, we express these polynomials as the inverse Fourier transform of a Hankel determinant that satisfies a Painlevé V equation. We prove that γk(c) is very smooth at its transition points and also determine the asymptotics of γk(c) in a large neighbourhood of k = c/2. Finally, we consider the coefficients that appear in the asymptotics of elliptic aliquot cycles.

1.
Basor
,
E.
,
Chen
,
Y.
, and
Ehrhardt
,
T.
, “
Painlevé V and time-dependent Jacobi polynomials
,”
J. Phys. A: Math. Theor.
43
,
015204
(
2010
).
2.
Bettin
,
S.
, “
Notes on Mk(c)
,” personal communication (3 May 2018).
3.
Cramér
,
H.
, “
Über zwei sätze von Herrn G.H. Hardy
,”
Math. Z.
15
,
201
210
(
1922
).
4.
David
,
C.
,
Koukoulopoulos
,
D.
, and
Smith
,
E.
, “
Sums of Euler products and statistics of elliptic curves
,”
Math. Ann.
368
(
1–2
),
685
752
(
2017
).
5.
Dodgson
,
C. L.
, “
Condensation of determinants, being a new and brief method for computing their arithmetical values
,”
Proc. R. Soc. London
15
,
150
155
(
1866–1867
).
6.
Deaño
,
A.
,
Huybrechs
,
D.
, and
Iserles
,
A.
, “
The kissing polynomials and their Hankel determinants
,” e-print arXiv:1504.07297.
7.
Keating
,
J. P.
,
Rodgers
,
B.
,
Roditty-Gershon
,
E.
, and
Rudnick
,
Z.
, “
Sums of divisor functions inFq[t] and matrix integrals
,”
Math. Z.
288
,
167
198
(
2018
).
8.
Lester
,
S.
, “
On the variance of sums of divisor functions in short intervals
,”
Proc. Am. Math. Soc.
144
(
12
),
5015
5027
(
2016
).
9.
Sogo
,
K.
, “
Time dependent orthogonal polynomials and theory of solitionapplications to matrix model, vertex model and level statistics
,”
J. Phys. Soc. Jpn.
62
,
1887
1894
(
1993
).
10.
Tong
,
K. C.
, “
On divisor problems III
,”
Acta. Math. Sin.
6
,
515
541
(
1956
).
You do not currently have access to this content.