The elliptic Calogero-Moser integrable system for an arbitrary root system has a realization as a moduli space of Higgs bundles over an Abelian variety associated with the elliptic curve and with the root system. This paper examines the Fourier-Mukai transform of this, giving an interpretation of the system on a network of elliptic curves. The rational and trigonometric versions of the systems are briefly discussed, and it is shown how they enter as degenerations in this geometric context.

1.
Airault
,
H.
,
McKean
,
H. P.
, and
Moser
,
J.
, “
Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
,”
Comm. Pure Appl. Math.
30
,
95
148
(
1977
).
2.
Ben-Zvi
,
D.
and
Nevins
,
T.
, “
From solitons to many-body systems
,”
Pure Appl. Math. Q.
4
,
319
361
(
2008
).
3.
Bernshtein
,
I. N.
and
Shvartsman
,
O. V.
, “
Chevalley’s theorem for complex crystallographic coxeter groups
,”
Funct. Anal. Appl.
12
,
308
309
(
1978
).
4.
Bordner
,
A. J.
,
Corrigan
,
E.
, and
Sasaki
,
R.
, “
Generalized Calogero-Moser models and universal lax pair operators
,”
Prog. Theor. Phys.
102
,
499
529
(
1999
).
5.
Bottacin
,
F.
, “
Symplectic geometry on moduli spaces of stable pairs
,”
Ann. Sci. École Norm. Sup.
28
,
391
433
(
1995
).
6.
Calogero
,
F.
, “
Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials
,”
J. Math. Phys.
12
,
419
436
(
1971
).
7.
Costello
,
K.
and
Grojnowski
,
I.
, “
Hilbert schemes, Hecke algebras and the Calogero-Sutherland system
,” e-print arXiv:math.AG/0310189.
8.
d’Hoker
,
E.
and
Phong
,
D. H.
, “
Calogero-Moser lax pairs with spectral parameter for general Lie algebras
,”
Nucl. Phys. B
530
,
537
610
(
1998
).
9.
d’Hoker
,
E.
and
Phong
,
D. H.
, “
Spectral curves for super-Yang-Mills with adjoint hypermultiplet for general simple Lie algebras
,”
Nucl. Phys. B
534
,
697
719
(
1998
).
10.
Donagi
,
R.
, “
Seiberg-Witten integrable systems
,” in
Proceedings of Symposia in Pure Mathematics, Part 2
(
American Mathematical Society
,
Providence, RI
,
1997
), Vol. 62, pp.
3
43
.
11.
Etingof
,
P.
and
Ginzburg
,
V.
, “
Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism
,”
Invent. Math.
147
,
243
348
(
2002
).
12.
Friedman
,
R.
,
Morgan
,
J. W.
, and
Witten
,
E.
, “
Principal G-bundles over elliptic curves
,”
Math. Res. Lett.
5
,
97
118
(
1998
).
13.
Gorbasevich
,
V. V.
,
Onishchik
,
A. L.
, and
Vinberg
,
E. B.
, “
Structure of Lie groups and Lie Algebras: Lie groups and Lie algebras III
,” in
Encyclopaedia of Mathematical Sciences
(
Springer
,
1994
), Vol 41.
14.
Hurtubise
,
J.
and
Nevins
,
T.
, “
The geometry of the Calogero-Moser system
,”
Ann. Inst. Fourier
55
,
2091
2116
(
2005
).
15.
Khastgir
,
S. P.
and
Sasaki
,
R.
, “
Liouville integrability of classical Calogero-Moser models
,”
Phys. Lett. A
279
,
189
193
(
2001
).
16.
Krichever
,
I. M.
, “
Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles
,”
Funct. Anal. Appl.
14
,
282
290
(
1980
).
17.
Looijenga
,
E.
, “
Root systems and elliptic curves
,”
Invent. Math.
38
,
17
32
(
1976
).
18.
Looijenga
,
E.
, “
Invariant theory for generalized root systems
,”
Invent. Math.
61
,
1
32
(
1980
).
19.
Markman
,
E.
, “
Spectral curves and integrable systems
,”
Compos. Math.
93
,
255
290
(
1994
).
20.
Moser
,
J.
, “
Three integrable Hamiltonian systems connected with isospectral deformations
,”
Adv. Math.
16
,
197
220
(
1975
).
21.
Olshanetsky
,
M. A.
and
Perelomov
,
A. M.
, “
Completely integrable Hamiltonian systems connected with semisimple Lie algebras
,”
Invent. Math.
37
,
93
108
(
1976
).
22.
Sutherland
,
B.
, “
Exact results for a quantum many-body problem in one-dimension. II
,”
Phys. Rev. A
5
,
1372
1376
(
1972
).
23.
Wilson
,
G.
, “
Collisions of Calogero-Moser particles and an adelic Grassmannian
,”
Invent. Math.
133
,
1
41
(
1998
).
You do not currently have access to this content.