The elliptic Calogero-Moser integrable system for an arbitrary root system has a realization as a moduli space of Higgs bundles over an Abelian variety associated with the elliptic curve and with the root system. This paper examines the Fourier-Mukai transform of this, giving an interpretation of the system on a network of elliptic curves. The rational and trigonometric versions of the systems are briefly discussed, and it is shown how they enter as degenerations in this geometric context.
REFERENCES
1.
Airault
, H.
, McKean
, H. P.
, and Moser
, J.
, “Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
,” Comm. Pure Appl. Math.
30
, 95
–148
(1977
).2.
Ben-Zvi
, D.
and Nevins
, T.
, “From solitons to many-body systems
,” Pure Appl. Math. Q.
4
, 319
–361
(2008
).3.
Bernshtein
, I. N.
and Shvartsman
, O. V.
, “Chevalley’s theorem for complex crystallographic coxeter groups
,” Funct. Anal. Appl.
12
, 308
–309
(1978
).4.
Bordner
, A. J.
, Corrigan
, E.
, and Sasaki
, R.
, “Generalized Calogero-Moser models and universal lax pair operators
,” Prog. Theor. Phys.
102
, 499
–529
(1999
).5.
Bottacin
, F.
, “Symplectic geometry on moduli spaces of stable pairs
,” Ann. Sci. École Norm. Sup.
28
, 391
–433
(1995
).6.
Calogero
, F.
, “Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials
,” J. Math. Phys.
12
, 419
–436
(1971
).7.
Costello
, K.
and Grojnowski
, I.
, “Hilbert schemes, Hecke algebras and the Calogero-Sutherland system
,” e-print arXiv:math.AG/0310189.8.
d’Hoker
, E.
and Phong
, D. H.
, “Calogero-Moser lax pairs with spectral parameter for general Lie algebras
,” Nucl. Phys. B
530
, 537
–610
(1998
).9.
d’Hoker
, E.
and Phong
, D. H.
, “Spectral curves for super-Yang-Mills with adjoint hypermultiplet for general simple Lie algebras
,” Nucl. Phys. B
534
, 697
–719
(1998
).10.
Donagi
, R.
, “Seiberg-Witten integrable systems
,” in Proceedings of Symposia in Pure Mathematics, Part 2
(American Mathematical Society
, Providence, RI
, 1997
), Vol. 62, pp. 3
–43
.11.
Etingof
, P.
and Ginzburg
, V.
, “Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism
,” Invent. Math.
147
, 243
–348
(2002
).12.
Friedman
, R.
, Morgan
, J. W.
, and Witten
, E.
, “Principal G-bundles over elliptic curves
,” Math. Res. Lett.
5
, 97
–118
(1998
).13.
Gorbasevich
, V. V.
, Onishchik
, A. L.
, and Vinberg
, E. B.
, “Structure of Lie groups and Lie Algebras: Lie groups and Lie algebras III
,” in Encyclopaedia of Mathematical Sciences
(Springer
, 1994
), Vol 41.14.
Hurtubise
, J.
and Nevins
, T.
, “The geometry of the Calogero-Moser system
,” Ann. Inst. Fourier
55
, 2091
–2116
(2005
).15.
Khastgir
, S. P.
and Sasaki
, R.
, “Liouville integrability of classical Calogero-Moser models
,” Phys. Lett. A
279
, 189
–193
(2001
).16.
Krichever
, I. M.
, “Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles
,” Funct. Anal. Appl.
14
, 282
–290
(1980
).17.
Looijenga
, E.
, “Root systems and elliptic curves
,” Invent. Math.
38
, 17
–32
(1976
).18.
Looijenga
, E.
, “Invariant theory for generalized root systems
,” Invent. Math.
61
, 1
–32
(1980
).19.
Markman
, E.
, “Spectral curves and integrable systems
,” Compos. Math.
93
, 255
–290
(1994
).20.
Moser
, J.
, “Three integrable Hamiltonian systems connected with isospectral deformations
,” Adv. Math.
16
, 197
–220
(1975
).21.
Olshanetsky
, M. A.
and Perelomov
, A. M.
, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras
,” Invent. Math.
37
, 93
–108
(1976
).22.
Sutherland
, B.
, “Exact results for a quantum many-body problem in one-dimension. II
,” Phys. Rev. A
5
, 1372
–1376
(1972
).23.
Wilson
, G.
, “Collisions of Calogero-Moser particles and an adelic Grassmannian
,” Invent. Math.
133
, 1
–41
(1998
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.