We propose that the distinction between interacting and noninteracting integrable systems is characterized by the Onsager matrix. It being zero is the defining property of a noninteracting integrable system. To support our view, various classical and quantum integrable chains are discussed.

1.
M.
Toda
,
Theory of Nonlinear Lattices
(
Springer-Verlag
,
2012
).
2.
L. D.
Faddeev
and
L. A.
Takhtajan
,
Hamiltonian Methods in the Theory of Solitons
(
Springer-Verlag
,
1987
).
3.
V. E.
Korepin
,
N. M.
Bogoliubov
, and
A. G.
Izergin
,
Quantum Inverse Scattering Method and Correlation Functions
(
Cambridge University Press
,
1993
).
4.
T.
Giamarchi
,
Quantum Physics in One Dimension
(
Oxford University Press
,
2003
).
5.
F.
Essler
,
H.
Frahm
,
F.
Göhmann
,
A.
Klümper
, and
V. E.
Korepin
,
The One-Dimensional Hubbard Model
(
Cambridge University Press
,
2005
).
6.
A.
Polkovnikov
,
K.
Sengupta
,
A.
Silva
, and
M.
Vengalattore
, “
Colloquium: Nonequilibrium dynamics of closed interacting quantum system
,”
Rev. Mod. Phys.
83
,
863
(
2011
).
7.
J.
Sirker
,
R. G.
Pereira
, and
I.
Affleck
, “
Conservation laws, integrability, and transport in one-dimensional systems
,”
Phys. Rev. B
83
,
035115
(
2011
).
8.
F.
Essler
and
M.
Fagotti
, “
Quench dynamics and relaxation in isolated integrable quantum spin chains
,”
J. Stat. Mech.
2016
,
064002
.
9.
L.
Vidmar
and
M.
Rigol
, “
Generalized Gibbs ensemble in integrable lattice models
,”
J. Stat. Mech.
2016
,
064007
.
10.
M.
Fagotti
, “
Charges and currents in quantum spin chains: Late-time dynamics and spontaneous currents
,”
J. Phys. A: Math. Theor.
50
,
034005
(
2017
).
11.
C.
Mendl
and
H.
Spohn
, “
Current fluctuations for anharmonic chains in thermal equilibrium
,”
J. Stat. Mech.
2015
,
P03007
.
12.
T.
Prosen
, “
Open XXZ spin chain: Nonequilibrium steady state and strict bound on ballistic transport
,”
Phys. Rev. Lett.
106
,
217206
(
2011
).
13.
T.
Prosen
and
E.
Ilievski
, “
Families of quasi-local conservation laws and quantum spin transport
,”
Phys. Rev. Lett.
111
,
057203
(
2013
).
14.
E.
Ilievski
and
T.
Prosen
, “
Thermodyamic bounds on Drude weights in terms of almost-conserved quantities
,”
Commun. Math. Phys.
318
,
809
(
2013
).
15.
J. M. P.
Carmelo
and
T.
Prosen
, “
Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble
,”
Nucl. Phys. B
914
,
62
(
2017
).
16.
E.
Ilievski
and
J.
De Nardis
, “
On the microscopic origin of ideal conductivity
,”
Phys. Rev. Lett.
119
,
020602
(
2017
).
17.
M.
Medenjak
,
C.
Karrasch
, and
T.
Prosen
, “
Lower bounding diffusion constant by the curvature of Drude weight
,”
Phys. Rev. Lett.
119
,
080602
(
2017
).
18.
B.
Bertini
,
M.
Collura
,
J.
De Nardis
, and
M.
Fagotti
, “
Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents
,”
Phys. Rev. Lett.
117
,
207201
(
2016
).
19.
M.
Ljubotina
,
M.
Znidaric
, and
T.
Prosen
, “
Spin diffusion from an inhomogeneous quench in an integrable system
,”
Nat. Commun.
8
,
16117
(
2017
).
20.
T.
Prosen
and
B.
Zunkovic
, “
Macroscopic diffusive transport in a microscopically integrable Hamiltonian system
,”
Phys. Rev. Lett.
111
,
040602
(
2013
).
21.
A.
Kundu
and
A.
Dhar
, “
Equilibrium dynamical correlations in the Toda chain and other integrable models
,”
Phys. Rev. E
94
,
062130
(
2016
).
22.
G.
Misguich
,
K.
Mallick
, and
P. L.
Krapivsky
, “
Dynamics of the spin-1/2 Heisenberg chain initialized in a domain-wall state
,”
Phys. Rev. B
96
,
195151
(
2017
).
23.
B.
Doyon
and
H.
Spohn
, “
Dynamics of hard rods with initial domain wall state
,”
J. Stat. Mech.
2017
,
073210
.
24.
B.
Doyon
and
H.
Spohn
, “
Drude weights for the Lieb-Liniger Bose gas
,”
SciPost Phys.
3
,
039
(
2017
).
25.
C.
Boldrighini
,
R. L.
Dobrushin
, and
Yu. M.
Sukhov
, “
One-dimensional hard rod caricature of hydrodynamics
,”
J. Stat. Phys.
31
,
577
(
1983
).
26.
J. L.
Lebowitz
,
J. K.
Percus
, and
J.
Sykes
, “
Time evolution of the total distribution function of a one-dimensional system of hard rods
,”
Phys. Rev.
171
,
224
(
1968
).
27.
H.
Spohn
, “
Hydrodynamical theory for equilibrium time correlation functions of hard rods
,”
Ann. Phys.
141
,
353
(
1982
).
28.
H.
Spohn
,
Large Scale Dynamics of Interacting Particles
(
Springer-Verlag
,
1991
).
29.
O. A.
Castro-Alvaredo
,
B.
Doyon
, and
T.
Yoshimura
, “
Emergent hydrodynamics in integrable quantum systems out of equilibrium
,”
Phys. Rev. X
6
,
041065
(
2016
).
30.
V. B.
Bulchandani
,
R.
Vasseur
,
C.
Karrasch
, and
J. E.
Moore
, “
Solvable hydrodynamics of quantum integrable systems
,”
Phys. Rev. Lett.
119
,
220604
(
2017
).
31.
B.
Doyon
,
T.
Yoshimura
, and
J.-S.
Caux
, “
Soliton gases and generalized hydrodynamics
,”
Phys. Rev. Lett.
120
,
045301
(
2018
).
32.
V.
Alba
, “
Entanglement and quantum transport in integrable systems
,” e-print arXiv:1706.00020 (
2017
).
33.
L.
Piroli
,
J.
De Nardis
,
M.
Collura
,
B.
Bertini
, and
M.
Fagotti
, “
Transport in out-of-equilibrium XXZ chains: Non-ballistic behavior and correlation functions
,”
Phys. Rev. B
96
,
115124
(
2017
).
34.
E.
Ilievski
and
J.
De Nardis
, “
Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
,”
Phys. Rev. B
96
,
081118
(
2017
).
35.
C.
Mendl
and
H.
Spohn
, “
Low temperature dynamics of the one-dimensional discrete nonlinear Schrödinger equation
,”
J. Stat. Mech.
2015
,
P08028
.
36.
H.
Spohn
, “
Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains
,” in
Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer
, Lecture Notes in Physics, edited by
S.
Lepri
(
Springer
,
2016
), Vol. 921, pp.
107
158
.
You do not currently have access to this content.