We propose that the distinction between interacting and noninteracting integrable systems is characterized by the Onsager matrix. It being zero is the defining property of a noninteracting integrable system. To support our view, various classical and quantum integrable chains are discussed.
REFERENCES
1.
2.
L. D.
Faddeev
and L. A.
Takhtajan
, Hamiltonian Methods in the Theory of Solitons
(Springer-Verlag
, 1987
).3.
V. E.
Korepin
, N. M.
Bogoliubov
, and A. G.
Izergin
, Quantum Inverse Scattering Method and Correlation Functions
(Cambridge University Press
, 1993
).4.
T.
Giamarchi
, Quantum Physics in One Dimension
(Oxford University Press
, 2003
).5.
F.
Essler
, H.
Frahm
, F.
Göhmann
, A.
Klümper
, and V. E.
Korepin
, The One-Dimensional Hubbard Model
(Cambridge University Press
, 2005
).6.
A.
Polkovnikov
, K.
Sengupta
, A.
Silva
, and M.
Vengalattore
, “Colloquium: Nonequilibrium dynamics of closed interacting quantum system
,” Rev. Mod. Phys.
83
, 863
(2011
).7.
J.
Sirker
, R. G.
Pereira
, and I.
Affleck
, “Conservation laws, integrability, and transport in one-dimensional systems
,” Phys. Rev. B
83
, 035115
(2011
).8.
F.
Essler
and M.
Fagotti
, “Quench dynamics and relaxation in isolated integrable quantum spin chains
,” J. Stat. Mech.
2016
, 064002
.9.
L.
Vidmar
and M.
Rigol
, “Generalized Gibbs ensemble in integrable lattice models
,” J. Stat. Mech.
2016
, 064007
.10.
M.
Fagotti
, “Charges and currents in quantum spin chains: Late-time dynamics and spontaneous currents
,” J. Phys. A: Math. Theor.
50
, 034005
(2017
).11.
C.
Mendl
and H.
Spohn
, “Current fluctuations for anharmonic chains in thermal equilibrium
,” J. Stat. Mech.
2015
, P03007
.12.
T.
Prosen
, “Open XXZ spin chain: Nonequilibrium steady state and strict bound on ballistic transport
,” Phys. Rev. Lett.
106
, 217206
(2011
).13.
T.
Prosen
and E.
Ilievski
, “Families of quasi-local conservation laws and quantum spin transport
,” Phys. Rev. Lett.
111
, 057203
(2013
).14.
E.
Ilievski
and T.
Prosen
, “Thermodyamic bounds on Drude weights in terms of almost-conserved quantities
,” Commun. Math. Phys.
318
, 809
(2013
).15.
J. M. P.
Carmelo
and T.
Prosen
, “Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble
,” Nucl. Phys. B
914
, 62
(2017
).16.
E.
Ilievski
and J.
De Nardis
, “On the microscopic origin of ideal conductivity
,” Phys. Rev. Lett.
119
, 020602
(2017
).17.
M.
Medenjak
, C.
Karrasch
, and T.
Prosen
, “Lower bounding diffusion constant by the curvature of Drude weight
,” Phys. Rev. Lett.
119
, 080602
(2017
).18.
B.
Bertini
, M.
Collura
, J.
De Nardis
, and M.
Fagotti
, “Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents
,” Phys. Rev. Lett.
117
, 207201
(2016
).19.
M.
Ljubotina
, M.
Znidaric
, and T.
Prosen
, “Spin diffusion from an inhomogeneous quench in an integrable system
,” Nat. Commun.
8
, 16117
(2017
).20.
T.
Prosen
and B.
Zunkovic
, “Macroscopic diffusive transport in a microscopically integrable Hamiltonian system
,” Phys. Rev. Lett.
111
, 040602
(2013
).21.
A.
Kundu
and A.
Dhar
, “Equilibrium dynamical correlations in the Toda chain and other integrable models
,” Phys. Rev. E
94
, 062130
(2016
).22.
G.
Misguich
, K.
Mallick
, and P. L.
Krapivsky
, “Dynamics of the spin-1/2 Heisenberg chain initialized in a domain-wall state
,” Phys. Rev. B
96
, 195151
(2017
).23.
B.
Doyon
and H.
Spohn
, “Dynamics of hard rods with initial domain wall state
,” J. Stat. Mech.
2017
, 073210
.24.
B.
Doyon
and H.
Spohn
, “Drude weights for the Lieb-Liniger Bose gas
,” SciPost Phys.
3
, 039
(2017
).25.
C.
Boldrighini
, R. L.
Dobrushin
, and Yu. M.
Sukhov
, “One-dimensional hard rod caricature of hydrodynamics
,” J. Stat. Phys.
31
, 577
(1983
).26.
J. L.
Lebowitz
, J. K.
Percus
, and J.
Sykes
, “Time evolution of the total distribution function of a one-dimensional system of hard rods
,” Phys. Rev.
171
, 224
(1968
).27.
H.
Spohn
, “Hydrodynamical theory for equilibrium time correlation functions of hard rods
,” Ann. Phys.
141
, 353
(1982
).28.
H.
Spohn
, Large Scale Dynamics of Interacting Particles
(Springer-Verlag
, 1991
).29.
O. A.
Castro-Alvaredo
, B.
Doyon
, and T.
Yoshimura
, “Emergent hydrodynamics in integrable quantum systems out of equilibrium
,” Phys. Rev. X
6
, 041065
(2016
).30.
V. B.
Bulchandani
, R.
Vasseur
, C.
Karrasch
, and J. E.
Moore
, “Solvable hydrodynamics of quantum integrable systems
,” Phys. Rev. Lett.
119
, 220604
(2017
).31.
B.
Doyon
, T.
Yoshimura
, and J.-S.
Caux
, “Soliton gases and generalized hydrodynamics
,” Phys. Rev. Lett.
120
, 045301
(2018
).32.
V.
Alba
, “Entanglement and quantum transport in integrable systems
,” e-print arXiv:1706.00020 (2017
).33.
L.
Piroli
, J.
De Nardis
, M.
Collura
, B.
Bertini
, and M.
Fagotti
, “Transport in out-of-equilibrium XXZ chains: Non-ballistic behavior and correlation functions
,” Phys. Rev. B
96
, 115124
(2017
).34.
E.
Ilievski
and J.
De Nardis
, “Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach
,” Phys. Rev. B
96
, 081118
(2017
).35.
C.
Mendl
and H.
Spohn
, “Low temperature dynamics of the one-dimensional discrete nonlinear Schrödinger equation
,” J. Stat. Mech.
2015
, P08028
.36.
H.
Spohn
, “Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains
,” in Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer
, Lecture Notes in Physics, edited by S.
Lepri
(Springer
, 2016
), Vol. 921, pp. 107
–158
.© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.