It is well known that the Clifford algebras and the Dirac equation have a representation in terms of differential forms known as the Kähler-Atiyah algebra and the Dirac-Kähler equation, respectively. In this paper, we have introduced a new product of differential p-forms and obtained a representation in terms of differential forms for the DKP algebra and for the DKP equation. We have studied the properties of this new product in some detail and obtained, among other results, the action of the rotation group in this formalism. We have also obtained a conversed current and a Lagrangian for our differential forms version of the DKP equation.

1.
M. P.
Do Carmo
,
Differential Forms and Applications
(
Springer-Verlag
,
1994
).
2.
S.
Morita
,
Geometry of Differential Forms
(
American Mathematical Society
,
2001
).
3.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
W. H. Freeman and Co.
,
1973
).
4.
T.
Dray
,
Differential Forms and the Geometry of General Relativity
(
A. K. Peters/CRC Press
,
2014
).
5.
E.
Kähler
,
Mathematische Werke/Mathematical Works
, edited by
R.
Berndt
and
O.
Riemenschneider
(
Walter de Gruyter GmbH & Co.
,
2003
).
6.
I. M.
Benn
and
R. W.
Tucker
, “
The Dirac equation in exterior form
,”
Commun. Math. Phys.
98
,
53
63
(
1985
).
7.
N. A.
Salingaros
and
G. P.
Wene
, “
The Clifford algebra of differential forms
,”
Acta Appl. Math.
4
,
271
292
(
1985
).
8.
J.
Vaz
, Jr.
and
R.
Rocha
, Jr.
,
An Introduction to Clifford Algebras and Spinors
(
Oxford University Press
,
2016
).
9.
M.
Desbrun
,
A. N.
Hirani
,
M.
Leok
, and
J. E.
Marsden
, “
Discrete exterior calculus
,” e-print arXiv:math/0508341v2 [math.DG].
10.
I.
Montvay
and
G.
Münster
,
Quantum Fields on a Lattice
(
Cambridge University Press
,
1994
).
11.
T.
Frankel
,
The Geometry of Physics: An Introduction
(
Cambridge University Press
,
1997
).
12.
P.
Becher
and
H.
Joos
, “
The Dirac-Kähler equation and fermions on the lattice
,”
Z. Phys. C
15
,
343
365
(
1982
).
13.
J.
Rabin
, “
Homology theory of lattice fermion doubling
,”
Nucl. Phys. B
201
,
315
332
(
1982
).
14.
J.
Vaz
, Jr.
, “
Clifford-like calculus over lattices
,”
Adv. Appl. Clifford Algebras
7
,
37
70
(
1997
).
15.
I.
Kanamori
and
N.
Kawamoto
, “
Dirac-Kähler fermion from Clifford product with noncommutative differential form on a lattice
,”
Int. J. Mod. Phys. A
19
,
695
736
(
2004
).
16.
V.
De Beaucé
,
S.
Sen
, and
J. C.
Sexton
, “
Chiral Dirac fermions on the lattice using geometric discretisation
Nucl. Phys. B - Proc. Suppl.
129-130
,
468
470
(
2004
).
17.
V.
Susuch
, “
A discrete model of the Dirac-Kähler equation
,”
Rep. Math. Phys.
73
,
109
125
(
2014
).
18.
H.
Umezawa
,
Quantum Field Theory
(
North-Holland Publishing Co.
,
1956
).
19.
W.
Greiner
,
Relativistic Quantum Mechanics: Wave Equations
(
Springer
,
2000
).
20.
R. J.
Duffin
, “
On the characteristic matrices of covariant systems
,”
Phys. Rev.
54
,
1114
(
1938
).
21.
N.
Kemmer
, “
The particle aspect of meson theory
,”
Proc. R. Soc. A
173
,
91
116
(
1939
).
22.
G.
Petiau
, “
Contribution à la théorie des équations d’ondes corpusculaires
,”
Acad. R. Belg., A. Sci. Mem. Collect.
16
(
2
),
118
(
1936
), published in University of Paris thesis (1936).
23.
E.
Fischback
,
M.
Martin Nieto
, and
C. K.
Scott
, “
The association of the Sakata-Taketani (Feshback-Villars) field with the Kemmer field, under symmetry breaking
,”
Prog. Theor. Phys.
48
,
574
595
(
1972
).
24.
E.
Fischback
,
M.
Martin Nieto
,
H.
Primakoff
, and
C. K.
Scott
, “
Meson decay and DKP equation
,”
Phys. Rev. D
9
,
2183
2186
(
1974
).
25.
J. T.
Lunardi
,
B. M.
Pimentel
,
R. G.
Teixeira
, and
J. S.
Valverde
, “
Remarks on Duffin-Kemmer-Petiau theory and gauge invariance
,”
Phys. Lett. A
268
,
165
173
(
2000
).
26.
L. M.
Abreu
,
E. S.
Santos
, and
J. D. M.
Vianna
, “
Duffin-Kemmer-Petiau theory with minimal and non-minimal couplings
,”
J. Phys. A: Math. Theor.
43
,
495402
(
2010
).
27.
V.
Gribov
, “
QCD at large and short distances
,”
Eur. Phys. J. C
10
,
71
90
(
1999
).
28.
I. V.
Kanatchikov
, “
On the Duffin-Kemmer-Petiau formulation of the covariant Hamiltonian dynamics in field theory
,”
Rep. Math. Phys.
46
,
107
112
(
2000
).
29.
R. T.
Cavalcanti
,
J. M.
Hoff da Silva
, and
R.
da Rocha
, “
VSR symmetries in the DKP algebra: The interplay between Dirac and Elko spinor fields
,”
Eur. Phys. J. Plus
129
,
246
(
2014
).
30.
R. T.
Cavalcanti
,
R.
da Rocha
, and
J. M.
Hoff da Silva
, “
Could Elko spinor fields induce VSR symmetry in the DKP (Meson) algebra
,”
Adv. Appl. Clifford Algebras
27
,
267
277
(
2017
).
31.
I.
Agricola
and
T.
Friedrich
,
Global Analysis: Differential Forms in Analysis, Geometry, and Physics
(
American Mathematical Society
,
2002
).
32.
W.
Thirring
,
Classical Mathematical Physics: Dynamical Systems and Field Theories
(
Springer
,
1992
).
33.
W.
Graf
, “
Differential forms as spinors
,”
Ann. I. Henri Poincaré Sect. A
29
,
85
109
(
1978
).
34.
I.
Porteous
,
Clifford Algebras and the Classical Groups
(
Cambridge University Press
,
1995
).
35.
W. E.
Baylis
, “
The paravector model of spacetime
,” in
Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering
, edited by
W. E.
Baylis
(
Birkhauser
,
Boston
,
1996
), pp
237
252
.
36.
J.
Vaz
, Jr.
, “
The Clifford algebra of physical space and Dirac theory
,”
Eur. J. Phys.
37
,
055407
(
2016
).
37.
J.
Vaz
, Jr.
, “
The Clifford algebra of physical space and Elko spinors
,”
Int. J. Theor. Phys.
57
,
582
601
(
2018
).
You do not currently have access to this content.