In this work, we construct Liouville quantum gravity on an annulus in the complex plane. This construction is aimed at providing a rigorous mathematical framework to the work of theoretical physicists initiated by Polyakov in 1981. It is also a very important example of a conformal field theory (CFT). Results have already been obtained on the Riemann sphere and on the unit disk, so this paper will follow the same approach. The case of the annulus contains two difficulties: it is a surface with two boundaries and it has a non-trivial moduli space. We recover the Weyl anomaly—a formula verified by all CFT—and deduce from it the Knizhnik-Polyakov-Zamolodchikov (KPZ) formula. We also show that the full partition function of Liouville quantum gravity integrated over the moduli space is finite. This allows us to give the joint law of the Liouville measures and of the random modulus and to write the conjectured link with random planar maps.

1.
Alvarez
,
O.
, “
Theory of strings with boundaries: Fluctuations, topology and quantum geometry
,”
Nucl. Phys. B
216
,
125
184
(
1983
).
2.
Bilal
,
A.
and
Ferrari
,
F.
, “
Multi-loop zeta function regularization and spectral cutoff in curved spacetime
,”
Nuclear Phys. B
877
,
956
1027
(
2013
).
3.
David
,
F.
, “
Conformal field theories coupled to 2-D gravity in the conformal gauge
,”
Mod. Phys. Lett. A
3
,
1651
1656
(
1988
).
4.
David
,
F.
,
Kupiainen
,
A.
,
Rhodes
,
R.
, and
Vargas
,
V.
, “
Liouville quantum gravity on the Riemann sphere
,”
Commun. Math. Phys.
342
,
869
907
(
2016
).
5.
David
,
F.
,
Rhodes
,
R.
, and
Vargas
,
V.
, “
Liouville quantum gravity on complex tori
,”
J. Math. Phys.
57
,
022302
(
2016
).
6.
D’Hoker
,
E.
and
Kurzepa
,
P. S.
, “
2-D quamtum gravity and Liouville theory
,”
Mod. Phys. Lett. A
5
(
18
),
1411
1421
(
1990
).
7.
D’Hoker
,
E.
and
Phong
,
D. H.
, “
The geometry of string perturbation theory
,”
Rev. Mod. Phys.
60
(
4
),
917
(
1988
).
8.
Distler
,
J.
and
Kawai
,
H.
, “
Conformal field theory and 2D quantum gravity
,”
Nucl. Phys. B
321
,
509
527
(
1989
).
9.
Dubédat
,
J.
, “
SLE and the free field: Partition functions and couplings
,”
J. Am. Math. Soc.
22
(
4
),
995
1054
(
2009
).
10.
Duplantier
,
B.
and
Sheffield
,
S.
, “
Liouville quantum gravity and KPZ
,”
Inventiones Math.
185
(
2
),
333
393
(
2011
).
11.
Gawedzki
,
K.
, “
Lectures on conformal field theory
,” in
Quantum Fields and Strings: A Course for Mathematicians
(Princeton, NJ, 1996/1997) (
American Mathematical Society
,
Providence, RI
,
1999
), Vols. 1 and 2, pp.
727
805
.
12.
Guillarmou
,
C.
,
Rhodes
,
R.
, and
Vargas
,
V.
, “
Polyakov’s formulation of 2d bosonic string theory
,” e-print arXiv:1607.08467.
13.
Huang
,
Y.
,
Rhodes
,
R.
, and
Vargas
,
V.
, “
Liouville quantum gravity on the unit disk
,”
Ann. Inst. H. Poincaré Probab. Statist.
54
,
1694
1730
(
2018
).
14.
Huber
,
S.
, “
Modular invariance and orbifolds
,” in
Proseminar in Theoretical Physics
(
ETH Zurich
,
2013
).
15.
Kahane
,
J.-P.
, “
Sur le chaos multiplicatif
,”
Ann. Sci. Math. Québec
9
(
2
),
105
150
(
1985
).
16.
Knizhnik
,
V. G.
,
Polyakov
,
A. M.
, and
Zamolodchikov
,
A. B.
, “
Fractal structure of 2D quantum gravity
,”
Mod. Phys. Lett. A
3
(
8
),
819
826
(
1988
).
17.
Martinec
,
E. J.
, “
The annular report on non-critical string theory
,” e-print arXiv:hep-th/0305148.
18.
Mavromatos
,
N. E.
and
Miramontes
,
J. L.
, “
Regularizing the functional integral in 2D quantum gravity
,”
Mod. Phys. Lett. A
04
,
1847
(
1989
).
19.
Melnikov
,
Y. A.
,
Green’s Functions and Infinite Products
(
Birkhauser
,
2010
).
20.
Miller
,
J.
and
Sheffield
,
S.
, “
Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric
,” e-print arXiv:1507.00719.
21.
Polchinski
,
J.
, “
Evaluation of the one loop string path integral
,”
Commun. Math. Phys.
104
,
37
47
(
1986
).
22.
Polyakov
,
A. M.
, “
Quantum geometry of bosonic strings
,”
Phys. Lett. B
103
,
207
210
(
1981
).
23.
Rhodes
,
R.
and
Vargas
,
V.
, “
Gaussian multiplicative chaos and applications: A review
,”
Probab. Surv.
11
,
315
392
(
2014
).
24.
Rhodes
,
R.
and
Vargas
,
V.
, “
Lecture notes on Gaussian multiplicative chaos and Liouville quantum gravity
,” in
Les Houches Summer School Proceedings
; e-print arXiv:1602.07323.
25.
Sarnak
,
P.
, “
Determinants of Laplacians
,”
Commun. Math. Phys.
110
,
113
120
(
1987
).
26.
Weisberger
,
W. I.
, “
Conformal invariants for determinants of Laplacians on riemann surfaces
,”
Commun. Math. Phys.
112
,
633
638
(
1987
).
You do not currently have access to this content.