It has already been established that the properties required of an abstract sequential product as introduced by Gudder and Greechie are not enough to characterise the standard sequential product ab=aba on an operator algebra. We give three additional properties, each of which characterises the standard sequential product on either a von Neumann algebra or a Euclidean Jordan algebra. These properties are (1) invariance under the application of unital order isomorphisms, (2) symmetry of the sequential product with respect to a certain inner product, and (3) preservation of invertibility of the effects. To give these characterisations, we first have to study convex σ-sequential effect algebras. We show that these objects correspond to unit intervals of spectral order unit spaces with a homogeneous positive cone.

1.
E. M.
Alfsen
and
F. W.
Shultz
,
Geometry of State Spaces of Operator Algebras
(
Springer Science & Business Media
,
2012
).
2.
K.
Cho
,
B.
Jacobs
,
B.
Westerbaan
, and
B.
Westerbaan
, “
Quotient-comprehension chains
,” in
Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, UK, 15–17 July 2015
, Electronic Proceedings in Theoretical Computer Science 195, edited by
C.
Heunen
,
P.
Selinger
, and
J.
Vicary
(
Open Publishing Association
,
2015
), pp.
136
147
.
3.
C.-H.
Chu
, “
Infinite dimensional Jordan algebras and symmetric cones
,”
J. Algebra
491
,
357
371
(
2017
).
4.
J.
Faraut
and
A.
Korányi
,
Analysis on Symmetric Cones
(
Clarendon Press
,
Oxford
,
1994
).
5.
D. J.
Foulis
and
M. K.
Bennett
, “
Effect algebras and unsharp quantum logics
,”
Found. Phys.
24
(
10
),
1331
1352
(
1994
).
6.
S.
Gudder
, “
Convex and sequential effect algebras
,” preprint arXiv:1802.01265 (
2018
).
7.
S.
Gudder
and
R.
Greechie
, “
Sequential products on effect algebras
,”
Rep. Math. Phys.
49
(
1
),
87
111
(
2002
).
8.
S.
Gudder
and
R.
Greechie
, “
Uniqueness and order in sequential effect algebras
,”
Int. J. Theor. Phys.
44
(
7
),
755
770
(
2005
).
9.
S.
Gudder
and
F.
Latrémolière
, “
Characterization of the sequential product on quantum effects
,”
J. Math. Phys.
49
(
5
),
052106
(
2008
).
10.
S.
Gudder
and
G.
Nagy
, “
Sequentially independent effects
,”
Proc. Am. Math. Soc.
130
(
4
),
1125
1130
(
2002
).
11.
S.
Gudder
, “
Convex structures and effect algebras
,”
Int. J. Theor. Phys.
38
(
12
),
3179
3187
(
1999
).
12.
B.
Jacobs
,
J.
Mandemaker
, and
R.
Furber
, “
The expectation monad in quantum foundations
,”
Inf. Comput.
250
,
87
114
(
2016
).
13.
B.
Jacobs
and
A.
Westerbaan
, “
Distances between states and between predicates
,” preprint arXiv:1711.09740 (
2017
).
14.
P.
Jordan
,
Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik
(
Weidmann
,
1933
).
15.
P.
Jordan
,
J.
von Neumann
, and
E. P.
Wigner
, “
On an algebraic generalization of the quantum mechanical formalism
,” in
The Collected Works of Eugene Paul Wigner
(
Springer
,
1993
), pp.
298
333
.
16.
R. V.
Kadison
,
A Representation Theory for Commutative Topological Algebra
(
American Mathematical Society
,
1951
), Vol. 7.
17.
K.
McCrimmon
, “
A general theory of Jordan rings
,”
Proc. Natl. Acad. Sci. U. S. A.
56
(
4
),
1072
1079
(
1966
).
18.
L.
Weihua
and
Wu.
Junde
, “
A uniqueness problem of the sequence product on operator effect algebra
,”
J. Phys. A: Math. Theor.
42
(
18
),
185206
(
2009
).
19.
A.
Westerbaan
and
B.
Westerbaan
, “
A universal property for sequential measurement
,”
J. Math. Phys.
57
(
9
),
092203
(
2016
).
20.
A. A.
Westerbaan
, “
The category of Von Neumann algebras
,” Ph.D. thesis,
Radboud Universiteit Nijmegen
,
2018
.
21.
B.
Westerbaan
, “
Dagger and dilations in the category of Von Neumann algebras
,” Ph.D. thesis,
Radboud Universiteit Nijmegen
,
2018
.
22.
J.
van de Wetering
, “
Sequential measurement characterises quantum theory
,” preprint arXiv:1803.11139 (
2018
).
You do not currently have access to this content.