We introduce a notion of quantum function and develop a compositional framework for finite quantum set theory based on a 2-category of quantum sets and quantum functions. We use this framework to formulate a 2-categorical theory of quantum graphs, which captures the quantum graphs and quantum graph homomorphisms recently discovered in the study of nonlocal games and zero-error communication and relates them to quantum automorphism groups of graphs considered in the setting of compact quantum groups. We show that the 2-categories of quantum sets and quantum graphs are semisimple. We analyze dualisable and invertible 1-morphisms in these 2-categories and show that they correspond precisely to the existing notions of quantum isomorphism and classical isomorphism between sets and graphs.

1.
G.
Brassard
,
A.
Broadbent
, and
A.
Tapp
, “
Quantum pseudo-telepathy
,”
Found. Phys.
35
,
1877
1907
(
2005
); e-print arXiv:quant-ph/0407221.
2.
L.
Mančinska
and
D. E.
Roberson
, “
Quantum homomorphisms
,”
J. Comb. Theory, Ser. B
118
,
228
267
(
2016
); e-print arXiv:1212.1724.
3.
S.
Wang
, “
Quantum symmetry groups of finite spaces
,”
Commun. Math. Phys.
195
,
195
211
(
1998
); e-print arXiv:math/9807091.
4.
S. L.
Woronowicz
, “
Compact quantum groups
,” in
Symétries Quantiques
(
Les Houches
,
1995
;
North-Holland
,
Amsterdam
,
1998
), pp.
845
884
.
5.
T.
Banica
, “
Quantum automorphism groups of homogeneous graphs
,”
J. Funct. Anal.
224
,
243
280
(
2005
); e-print arXiv:math/0311402.
6.
A.
Atserias
,
L.
Mančinska
,
D. E.
Roberson
,
R.
Šámal
,
S.
Severini
, and
A.
Varvitsiotis
, “
Quantum and non-signalling graph isomorphisms
,” e-print arXiv:1611.09837 (
2016
).
7.
R.
Duan
,
S.
Severini
, and
A.
Winter
, “
Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number
,”
IEEE Trans. Inf. Theory
59
,
1164
1174
(
2013
); e-print arXiv:1002.2514.
8.
N.
Weaver
, “
Quantum graphs as quantum relations
,” e-print arXiv:1506.03892 (
2015
).
9.
B.
Musto
,
D.
Reutter
, and
D.
Verdon
, “
The Morita theory of quantum graph isomorphisms
,”
Commun. Math. Phys.
(to be published); e-print arXiv:1801.09705.
10.
B.
Eckmann
and
P. J.
Hilton
, “
Group-like structures in general categories. I. Multiplications and comultiplications
,”
Math. Ann.
145
,
227
255
(
1962
).
11.
D.
Stahlke
, “
Quantum zero-error source-channel coding and non-commutative graph theory
,”
IEEE Trans. Inf. Theory
62
,
554
577
(
2016
); e-print arXiv:1405.5254.
12.
G.
Kuperberg
and
N.
Weaver
,
A von Neumann Algebra Approach to Quantum Metrics/Quantum Relations
(
American Mathematical Society
,
2012
), Vol. 215; e-print arXiv:1005.0353.
13.
J.
Bichon
, “
Quantum automorphism groups of finite graphs
,”
Proc. Am. Math. Soc.
131
,
665
673
(
2003
); e-print arXiv:math/9902029.
14.
N.
Weaver
, “
Quantum relations
,” e-print arXiv:1005.0354 (
2010
).
15.
T.
Banica
,
J.
Bichon
, and
B.
Collins
, “
Quantum permutation groups: A survey
,” in
Noncommutative Harmonic Analysis with Applications to Probability
(
Institute of Mathematics Polish Academy of Sciences
,
2007
); e-print arXiv:math/0612724.
16.
T.
Banica
and
J.
Bichon
, “
Quantum automorphism groups of vertex-transitive graphs of order ≤11
,”
J. Algebraic Combinatorics
26
,
83
105
(
2007
); e-print arXiv:math/0601758.
17.
T.
Banica
and
J.
Bichon
, “
Quantum groups acting on 4 points
,”
J. Reine Angew. Math. (Crelles J.)
2009
,
75
114
; e-print arXiv:math/0703118.
18.
T.
Banica
,
J.
Bichon
, and
G.
Chenevier
, “
Graphs having no quantum symmetry
,”
Ann. Inst. Fourier
57
,
955
971
(
2007
); e-print arXiv:math/0605257.
19.
P. M.
Sołtan
, “
Quantum families of maps and quantum semigroups on finite quantum spaces
,”
J. Geom. Phys.
59
,
354
368
(
2009
); e-print arXiv:math/0610922.
20.
S.
Neshveyev
and
L.
Tuset
,
Compact Quantum Groups and Their Representation Categories, Collection SMF: Cours Spécialisés
(
American Mathematical Society
,
2013
).
21.
A.
Kornell
, “
Quantum functions
,” e-print arXiv:1101.1694 (
2011
).
22.
A.
Kornell
, “
Quantum sets
,” e-print arXiv:1804.00581 (
2018
).
23.
P. J.
Cameron
,
A.
Montanaro
,
M. W.
Newman
,
S.
Severini
, and
A.
Winter
, “
On the quantum chromatic number of a graph
,”
Electron. J. Combinatorics
14
,
R81
(
2007
); e-print arXiv:quant-ph/0608016.
24.
G.
Scarpa
and
S.
Severini
, “
Kochen–Specker sets and the rank-1 quantum chromatic number
,”
IEEE Trans. Inf. Theory
58
,
2524
2529
(
2012
); e-print arXiv:1106.0712.
25.
D.
Avis
,
J.
Hasegawa
,
Y.
Kikuchi
, and
Y.
Sasaki
, “
A quantum protocol to win the graph colouring game on all Hadamard graphs
,”
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
89
,
1378
1381
(
2006
), e-print arXiv:quant-ph/0509047.
26.
V. I.
Paulsen
and
I. G.
Todorov
, “
Quantum chromatic numbers via operator systems
,”
Q. J. Math.
66
,
677
692
(
2015
); e-print arXiv:1311.6850.
27.
V. I.
Paulsen
,
S.
Severini
,
D.
Stahlke
,
I. G.
Todorov
, and
A.
Winter
, “
Estimating quantum chromatic numbers
,”
J. Funct. Anal.
270
,
2188
2222
(
2016
); e-print arXiv:1407.6918.
28.
D. E.
Roberson
, “
Conic formulations of graph homomorphisms
,”
J. Algebraic Combinatorics
43
,
877
913
(
2016
); e-print arXiv:1411.6723.
29.
C. M.
Ortiz
and
V. I.
Paulsen
, “
Quantum graph homomorphisms via operator systems
,”
Linear Algebra Appl.
497
,
23
43
(
2016
); e-print arXiv:1505.00483.
30.
S.
Abramsky
and
B.
Coecke
, “
Categorical quantum mechanics
,” in
Handbook of Quantum Logic and Quantum Structures: Quantum Logic
(
Elsevier
,
2008
), pp.
261
324
; e-print arXiv:0808.1023.
31.
B.
Coecke
and
R.
Duncan
, “
Interacting quantum observables
,” in
Automata, Languages and Programming
, Lecture Notes in Computer Science, Vol. 5126 (
Springer Science + Business Media
,
2008
), pp.
298
310
; e-print arXiv:0906.4725.
32.
B.
Coecke
and
D.
Pavlović
, “
Quantum measurements without sums
,” in
Mathematics of Quantum Computation and Quantum Technology
, edited by
G.
Chen
,
L.
Kauffman
, and
S. J.
Lomonaco
(
Chapman and Hall/CRC
,
2007
), pp.
559
596
; e-print arXiv:quant-ph/0608035.
33.
B.
Coecke
,
D.
Pavlović
, and
J.
Vicary
, “
A new description of orthogonal bases
,” in (
Cambridge University Press
,
2009
), Vol. 23, pp.
555
567
.
34.
J.
Vicary
, “
Categorical formulation of finite-dimensional quantum algebras
,”
Commun. Math. Phys.
304
,
765
796
(
2010
); e-print arXiv:0805.0432.
35.
B.
Coecke
,
C.
Heunen
, and
A.
Kissinger
, “
Categories of quantum and classical channels
,”
Quantum Inf. Process.
15
,
5179
(
2014
); e-print arXiv:1305.3821.
36.
J.
Vicary
, “
Higher quantum theory
,” e-print arXiv:1207.4563 (
2012
).
37.
J.
Vicary
, “
Higher semantics of quantum protocols
,” in
27th Annual IEEE Symposium on Logic in Computer Science
(
Institute of Electrical & Electronics Engineers (IEEE)
,
2012
).
38.
D.
Reutter
and
J.
Vicary
, “
Biunitary constructions in quantum information
,” e-print arXiv:1609.07775 (
2016
).
39.
R.
Street
, “
The formal theory of monads
,”
J. Pure Appl. Algebra
2
,
149
168
(
1972
).
40.
D.
Marsden
, “
Category theory using string diagrams
,” e-print arXiv:1401.7220 (
2014
).
41.
R.
Hinze
and
D.
Marsden
, “
Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers
,”
J. Logical Algebraic Methods Program.
85
,
931
951
(
2016
).
42.
S.
Abramsky
,
R. S.
Barbosa
,
N.
de Silva
, and
O.
Zapata
, “
The quantum monad on relational structures
,” in
Proceedings of Mathematical Foundations of Computer Science
,
2017
; e-print arXiv:1705.07310.
43.
P.
Selinger
, “
A survey of graphical languages for monoidal categories
,” in
New Structures for Physics
, Lecture Notes in Physics (
Springer
,
Berlin, Heidelberg
,
2010
), pp.
289
355
; e-print arXiv:0908.3347.
44.
F.
Borceux
,
Handbook of Categorical Algebra, Encyclopedia of Mathematics and its Applications
(
Cambridge University Press
,
1994
), Vol. 1.
45.
C.
Heunen
and
M.
Karvonen
, “
Monads on dagger categories
,”
Theory Appl. Categories
31
,
1016
1043
(
2016
); e-print arXiv:1602.04324.
46.
A.
Joyal
and
R.
Street
, “
The geometry of tensor calculus. I
,”
Adv. Math.
88
,
55
112
(
1991
).
47.
A.
Joyal
and
R.
Street
, “
The geometry of tensor calculus. II
,” (
1991
), available online at http://maths.mq.edu.au/street/GTCII.pdf.
48.
B.
Coecke
, “
Quantum picturalism
,”
Contemp. Phys.
51
,
59
83
(
2010
); e-print arXiv:0908.1787.
49.
G.
Kelly
, “
Many-variable functorial calculus. I
,” in
Coherence in Categories
(
Springer
,
1972
), pp.
66
105
.
50.
G.
Kelly
and
M.
Laplaza
, “
Coherence for compact closed categories
,”
J. Pure Appl. Algebra
19
,
193
213
(
1980
).
51.
S.
Abramsky
and
B.
Coecke
, “
A categorical semantics of quantum protocols
,” in
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(
IEEE
,
2004
), pp.
415
425
; e-print arXiv:quant-ph/0402130.
52.
P.
Selinger
, “
Dagger compact closed categories and completely positive maps
,” in
Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005)
[
Electron. Notes Theor. Comput. Sci.
170
,
139
163
(
2007
)].
53.
J.
Adámek
,
H.
Herrlich
, and
G. E.
Strecker
,
Abstract and Concrete Categories: The Joy of Cats
(
John Wiley and Sons
,
1990
), available online at http://katmat.math.uni-bremen.de/acc/.
54.
P.
Freyd
, “
Homotopy is not concrete
,” in
The Steenrod Algebra and its Applications: A Conference to Celebrate NE Steenrod’s Sixtieth Birthday
(
Springer
,
1970
), pp.
25
34
.
55.
A.
Joyal
and
R.
Street
, “
An introduction to Tannaka duality and quantum groups
,” in
Lecture Notes in Mathematics
(
Springer Berlin Heidelberg
,
1991
), pp.
413
492
.
56.
A.
Maes
and
A.
Van Daele
, “
Notes on compact quantum groups
,”
Nieuw Archief voor Wiskunde
4
,
73
112
(
1998
); e-print arXiv:math/9803122.
57.
B.
Musto
and
J.
Vicary
, “
Quantum Latin squares and unitary error bases
,”
Quantum Inf. Comput.
16
,
1318
1332
(
2015
); e-print arXiv:1504.02715.
58.
B.
Musto
, “
Constructing mutually unbiased bases from quantum Latin squares
,”
Electron. Proc. Theor. Comput. Sci.
236
,
108
126
(
2017
); e-print arXiv:1605.08919.
59.
R. F.
Werner
, “
All teleportation and dense coding schemes
,”
J. Phys. A: Math. Gen.
34
,
7081
(
2001
).
60.
M.
Müger
, “
Abstract duality theory for symmetric tensor *-categories
,” in
Philosophy of Physics
(
Elsevier
,
2007
), pp.
865
922
.
61.
P.
Etingof
,
S.
Gelaki
,
D.
Nikshych
, and
V.
Ostrik
,
Tensor Categories
(
American Mathematical Society
,
2015
), available online at http://www.math.mit.edu/∼etingof/egnobookfinal.pdf.
62.
M.
Müger
, “
From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories
,”
J. Pure Appl. Algebra
180
,
81
157
(
2003
); e-print arXiv:math/0111204.
63.
M.
Müger
,
J. E.
Roberts
, and
L.
Tuset
, “
Representations of algebraic quantum groups and reconstruction theorems for tensor categories
,”
Algebras Representation Theory
7
,
517
573
(
2004
); e-print arXiv:math/0203206.
64.
J.
Vicary
, “
Completeness of †-categories and the complex numbers
,”
J. Math. Phys.
52
,
082104
(
2011
); e-print arXiv:0807.2927.
65.
P.
Selinger
, “
Idempotents in dagger categories
,” in
Proceedings of the 4th International Workshop on Quantum Programming Languages (QPL 2006)
[
Electron. Notes Theor. Comput. Sci.
210
,
107
122
(
2008
)].
You do not currently have access to this content.