In this paper, we consider the existence and multiplicity of solutions for the following quasilinear Choquard equation: Δu+V(x)uuΔ(u2)=(|x|μ*|u|p)|u|p2u,   xRN, where N ≥ 3, μ(0,N+22), p(2,4N4μN2). Under some assumptions on V, we obtain the existence of positive solutions, negative solutions, and high-energy solutions via perturbation method.

1.
C. O.
Alves
and
M.
Yang
, “
Multiplicity and concentration of solutions for a quasilinear Choquard equation
,”
J. Math. Phys.
55
(
6
),
061502
(
2014
).
2.
M.
Colin
and
L.
Jeanjean
, “
Solutions for a quasilinear Schrödinger equation: A dual approach
,”
Nonlinear Anal.
56
(
2
),
213
226
(
2004
).
3.
Y.
Deng
,
S.
Peng
, and
S.
Yan
, “
Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations
,”
J. Differ. Equations
260
(
2
),
1228
1262
(
2016
).
4.
E. H.
Lieb
and
M.
Loss
,
Analysis
, Volume 14 of Graduate Studies in Mathematics, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2001
).
5.
J.
Liu
,
X.
Liu
, and
Z.
Wang
, “
Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method
,”
Commun. Partial Differ. Equations
39
(
12
),
2216
2239
(
2014
).
6.
J.
Liu
,
Y.
Wang
, and
Z.
Wang
, “
Solutions for quasilinear Schrödinger equations via the Nehari method
,”
Commun. Partial Differ. Equations
29
(
5-6
),
879
901
(
2004
).
7.
J.
Liu
and
Z.
Wang
, “
Soliton solutions for quasilinear Schrödinger equations. I
,”
Proc. Am. Math. Soc.
131
(
2
),
441
448
(
2003
).
8.
J.
Liu
and
Z.
Wang
, “
Multiple solutions for quasilinear elliptic equations with a finite potential well
,”
J. Differ. Equations
257
(
8
),
2874
2899
(
2014
).
9.
X.
Liu
,
J.
Liu
, and
Z.
Wang
, “
Quasilinear elliptic equations via perturbation method
,”
Proc. Am. Math. Soc.
141
(
1
),
253
263
(
2013
).
10.
V.
Moroz
and
J.
Van Schaftingen
, “
Existence of groundstates for a class of nonlinear Choquard equations
,”
Trans. Am. Math. Soc.
367
(
9
),
6557
6579
(
2015
).
11.
M.
Poppenberg
,
K.
Schmitt
, and
Z.
Wang
, “
On the existence of soliton solutions to quasilinear Schrödinger equations
,”
Calculus Var. Partial Differ. Equations
14
(
3
),
329
344
(
2002
).
12.
P. H.
Rabinowitz
,
Minimax Methods in Critical Point Theory with Applications to Differential Equations
, Volume 65 of CBMS Regional Conference Series in Mathematics (
American Mathematical Society
,
Providence, RI
,
1986
).
13.
M.
Willem
,
Minimax Theorems
(
Birkhäuser Boston, Inc.
,
Boston, MA
,
1996
).
14.
K.
Wu
, “
Positive solutions of quasilinear Schrödinger equations with critical growth
,”
Appl. Math. Lett.
45
,
52
57
(
2015
).
15.
X.
Wu
and
K.
Wu
, “
Existence of positive solutions, negative solutions and high energy solutions for quasi-linear elliptic equations on RN.
,”
Nonlinear Anal. Real World Appl.
16
,
48
64
(
2014
).
16.
M.
Yang
and
Y.
Ding
, “
Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part
,”
Commun. Pure Appl. Anal.
12
(
2
),
771
783
(
2013
).
You do not currently have access to this content.