Distributions in superspace constitute a very useful tool for establishing an integration theory. In particular, distributions have been used to obtain a suitable extension of the Cauchy formula to superspace and to define integration over the superball and the supersphere through the Heaviside and Dirac distributions, respectively. In this paper, we extend the distributional approach to integration over more general domains and surfaces in superspace. The notions of domain and surface in superspace are defined by smooth bosonic phase functions g. This allows us to define domain integrals and oriented (as well as non-oriented) surface integrals in terms of the Heaviside and Dirac distributions of the superfunction g. It will be shown that the presented definition for the integrals does not depend on the choice of the phase function g defining the corresponding domain or surface. In addition, some examples of integration over a super-paraboloid and a super-hyperboloid will be presented. Finally, a new distributional Cauchy-Pompeiu formula will be obtained, which generalizes and unifies the previously known approaches.

1.
G. E.
Andrews
,
R.
Askey
, and
R.
Roy
,
Special Functions
, Volume 71 of Encyclopedia of Mathematics and its Applications (
Cambridge University Press
,
Cambridge
,
1999
).
2.
W. N.
Bailey
,
Generalized Hypergeometric Series
, Cambridge Tracts in Mathematics and Mathematical Physics (
Stechert-Hafner, Inc.
,
New York
,
1964
), Vol. 32.
3.
F. A.
Berezin
,
Introduction to Super Analysis
(
D. Reidel Publishing Co., Inc.
,
New York, NY, USA
,
1987
).
4.
H.
De Bie
,
D.
Eelbode
, and
F.
Sommen
, “
Spherical harmonics and integration in superspace: II
,”
J. Phys. A: Math. Theor.
42
(
24
),
245204
(
2009
).
5.
H.
Bremermann
,
Distributions, Complex Variables, and Fourier Transforms
(
Addison-Wesley Publishing Co., Inc.
,
Reading, Massachusetts, London
,
1965
).
6.
C.
Brouder
,
N.
Viet Dang
, and
F.
Hélein
, “
A smooth introduction to the wavefront set
,”
J. Phys. A: Math. Theor.
47
(
44
),
443001
(
2014
).
7.
K.
Coulembier
,
H.
De Bie
, and
F.
Sommen
, “
Integration in superspace using distribution theory
,”
J. Phys. A: Math. Theor.
42
(
39
),
395206
(
2009
).
8.
K.
Coulembier
,
H.
De Bie
, and
F.
Sommen
, “
Orthosymplectically invariant functions in superspace
,”
J. Math. Phys.
51
(
8
),
083504
(
2010
).
9.
H.
De Bie
and
F.
Sommen
, “
A Clifford analysis approach to superspace
,”
Ann. Phys.
322
(
12
),
2978
2993
(
2007
).
10.
H.
De Bie
and
F.
Sommen
, “
Correct rules for clifford calculus on superspace
,”
Adv. Appl. Clifford Algebras
17
(
3
),
357
382
(
2007
).
11.
H.
De Bie
and
F.
Sommen
, “
Spherical harmonics and integration in superspace
,”
J. Phys. A: Math. Theor.
40
(
26
),
7193
7212
(
2007
).
12.
H.
De Bie
and
F.
Sommen
, “
Fundamental solutions for the super Laplace and Dirac operators and all their natural powers
,”
J. Math. Anal. Appl.
338
(
2
),
1320
1328
(
2008
).
13.
H.
De Bie
and
F.
Sommen
, “
A Cauchy integral formula in superspace
,”
Bull. London Math. Soc.
41
(
4
),
709
722
(
2009
).
14.
R.
Delanghe
,
F.
Sommen
, and
V.
Souček
,
Clifford Algebra and Spinor-Valued Functions
, Volume 53 of Mathematics and its Applications (
Kluwer Academic Publishers Group
,
Dordrecht
,
1992
); A function theory for the Dirac operator, Related REDUCE software by
F.
Brackx
and
D.
Constales
, with 1 IBM-PC floppy disk (3.5 inch).
15.
B.
DeWitt
,
Supermanifolds
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
Cambridge
,
1984
).
16.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis
, Classics in Mathematics (
Springer-Verlag
,
Berlin
,
2003
); Reprint of the second (1990) edition Springer, Berlin; MR1065993 91m:35001a.
17.
D. A.
Leĭtes
, “
Introduction to the theory of supermanifolds
,”
Uspekhi Mat. Nauk.
35
(1(211))(3–57),
255
(
1980
).
18.
P.
Pizzetti
, “
Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera
,”
Rend. Lincei
5
(
18
),
182
185
(
1909
).
You do not currently have access to this content.