In this paper, we explore the graph approach to contextuality to restate the extended definition of noncontextuality as given by Kujala et al. [Phys. Rev. Lett. 115, 150401 (2015)] using graph-theoretical terms. This extended definition avoids the assumption of the pre-sheaf or non-disturbance condition, which states that if two contexts overlap, then the marginal distribution obtained for the intersection must be the same, a restriction that will never be perfectly satisfied in real experiments. With this, we are able to derive necessary conditions for extended noncontextuality for any set of random variables based on the geometrical aspects of the graph approach, which can be tested directly with experimental data in any contextuality experiment and which reduce to traditional necessary conditions for noncontextuality if the non-disturbance condition is satisfied.

1.
E. P.
Specker
, “
Die logik nicht gleichzeitig entsc heidbarer aussagen
,”
Dialectica
14
,
239
(
1960
).
2.
J. S.
Bell
, “
On the problem of hidden variables in quantum mechanics
,”
Rev. Mod. Phys.
38
,
447
452
(
1966
).
3.
S.
Kochen
and
E.
Specker
, “
The problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
,
59
87
(
1967
).
4.
A.
Fine
, “
Hidden variables, joint probability, and the Bell inequalities
,”
Phys. Rev. Lett.
48
,
291
295
(
1982
).
5.
A.
Abramsky
and
A.
Brandenburger
, “
The sheaf-theoretic structure of non-locality and contextuality
,”
New J. Phys.
13
,
113036
(
2011
).
6.
M.
Nawareg
,
F.
Bisesto
,
V.
D’Ambrosio
,
E.
Amselem
,
F.
Sciarrino
,
M.
Bourennane
, and
A.
Cabello
, “
Bounding quantum theory with the exclusivity principle in a two-city experiment
,” e-print arxiv:quant-ph/1311.3495 (
2013
).
7.
A.
Cabello
, “
Simple explanation of the quantum violation of a fundamental inequality
,”
Phys. Rev. Lett.
110
,
060402
(
2013
).
8.
A.
Cabello
, “
New scenarios in which Specker’s principle explains the maximum quantum contextuality
,” in
Proceedings of the 2013 Biennial Meeting of the Spanish Royal Society of Physics
,
28 February 2013
.
9.
A.
Cabello
,
S.
Severini
, and
A.
Winter
, “
Graph-theoretic approach to quantum correlations
,”
Phys. Rev. Lett.
112
,
040401
(
2014
).
10.
B.
Amaral
,
M. T.
Cunha
, and
A.
Cabello
, “
Exclusivity principle forbids sets of correlations larger than the quantum set
,”
Phys. Rev. A
89
,
030101
(
2014
).
11.
B.
Amaral
,
The exclusivity principle and the set of quantum distributions
, Ph.D. thesis,
Universidade Federal de Minas Gerais
,
2014
.
12.
R.
Raussendorf
, “
Contextuality in measurement-based quantum computation
,”
Phys. Rev. A
88
,
022322
(
2013
).
13.
M.
Howard
,
J.
Wallman
,
V.
Veitch
, and
J.
Emerson
, “
Contextuality supplies the /‘magic/’ for quantum computation
,”
Nature
510
,
351
355
(
2014
).
14.
N.
Delfosse
,
P.
Allard Guerin
,
J.
Bian
, and
R.
Raussendorf
, “
Wigner function negativity and contextuality in quantum computation on rebits
,”
Phys. Rev. X
5
,
021003
(
2015
).
15.
M.
Um
,
X.
Zhang
,
J.
Zhang
,
Y.
Wang
,
S.
Yangchao
,
D. L.
Deng
,
L.
Duan
, and
K.
Kim
, “
Experimental certification of random numbers via quantum contextuality
,”
Sci. Rep.
3
,
01627
(
2013
).
16.
N.
Brunner
,
D.
Cavalcanti
,
S.
Pironio
,
V.
Scarani
, and
S.
Wehner
, “
Bell nonlocality
,”
Rev. Mod. Phys
86
(
2
),
419
478
(
2014
).
17.
Y.
Hasegawa
,
R.
Loidl
,
G.
Badurek
,
M.
Baron
, and
H.
Rauch
, “
Quantum contextuality in a single-neutron optical experiment
,”
Phys. Rev. Lett.
96
,
230401
(
2006
).
18.
G.
Kirchmair
,
F.
Zähringer
,
R.
Gerritsma
,
M.
Kleinmann
,
O.
Gühne
,
A.
Cabello
,
R.
Blatt
, and
C. F.
Roos
, “
State-independent experimental test of quantum contextuality
,”
Nature
460
,
494
(
2009
).
19.
E.
Amselem
,
M.
Rådmark
,
M.
Bourennane
, and
A.
Cabello
, “
State-independent quantum contextuality with single photons
,”
Phys. Rev. Lett.
103
,
160405
(
2009
).
20.
R.
Lapkiewicz
,
P.
Li
,
C.
Schaeff
,
N.
Langford
,
S.
Ramelow
,
M.
Wiesniak
, and
A.
Zeilinger
, “
Experimental non-classicality of an indivisible quantum system
,”
Nature
474
,
490
(
2011
).
21.
G.
Borges
,
M.
Carvalho
,
P. L.
de Assis
,
J.
Ferraz
,
M.
Araújo
,
A.
Cabello
,
M. T.
Cunha
, and
S.
Pádua
, “
Experimental test of the quantum violation of the noncontextuality inequalities for the n-cycle scenario
,”
Phys. Rev. A
89
,
052106
(
2014
).
22.
F. M.
Leupold
,
M.
Malinowski
,
C.
Zhang
,
V.
Negnevitsky
,
A.
Cabello
,
J.
Alonso
, and
J. P.
Home
, “
Sustained state-independent quantum contextual correlations from a single ion
,”
Phys. Rev. Lett.
120
,
180401
(
2018
).
23.
J.-A.
Larsson
, “
A Kochen-Specker inequality
,”
Europhys. Lett.
58
,
799
(
2002
).
24.
A.
Winter
, “
What does an experimental test of quantum contextuality prove or disprove?
,”
J. Phys. A: Math. Theor.
47
,
424031
(
2014
).
25.
J. V.
Kujala
,
E. N.
Dzhafarov
, and
J.-A.
Larsson
, “
Necessary and sufficient conditions for extended noncontextuality in a broad class of quantum mechanical systems
,”
Phys. Rev. Lett.
115
,
150401
(
2015
).
26.
A.
Cabello
,
S.
Severini
, and
A.
Winter
, “
Graph-Theoretic Approach to Quantum Correlations
,”
Phys. Rev. Lett.
112
(
4
),
040401
(
2014
).
27.
D.
Avis
,
H.
Imai
, and
T.
Ito
, “
On the relationship between convex bodies related to correlation experiments with dichotomic observables
,”
J. Phys. A: Math. Gen.
39
,
11283
(
2006
).
28.
R.
Rabelo
,
C.
Duarte
,
A. J.
López-Tarrida
,
M. T.
Cunha
, and
A.
Cabello
, “
Multigraph approach to quantum non-locality
,”
J. Phys. A: Math. Theor.
47
,
424021
(
2014
).
29.
A.
Acín
,
T.
Fritz
,
A.
Leverrier
, and
A. B.
Sainz
, “
A combinatorial approach to nonlocality and contextuality
,”
Commun. Math. Phys.
334
,
533
628
(
2015
).
30.
B.
Amaral
and
M. T.
Cunha
, “
On geometrical aspects of the graph approach to contextuality
,” e-print arxiv: quantum-ph/1709.04812 (
2017
).
31.
I.
Pitowsky
, “
Correlation polytopes: Their geometry and complexity
,”
Math. Program.
50
,
395
414
(
1991
).
32.
M. M.
Deza
and
M.
Laurent
,
Geometry of Cuts and Metrics
, Algorithms and Combinatorics (
Springer
,
1997
), Vol. 15.
33.
D.
Avis
,
H.
Imai
, and
T.
Ito
, “
Generating facets for the cut polytope of a graph by triangular elimination
,”
Math. Program.
112
,
303
325
(
2006
).
34.
F.
Barahona
and
A. R.
Mahjoub
, “
On the cut polytope
,”
Math. Program.
36
,
157
173
(
1986
).
35.
M.
Froissart
, “
Constructive generalization of Bell’s inequalities
,”
II Nuovo Cimento B
64
,
241
251
(
1981
).
36.
D.
Collins
and
N.
Gisin
, “
A relevant two qubit bell inequality inequivalent to the CHSH inequality
,”
J. Phys. A: Math. Gen.
37
,
1775
(
2004
).
37.
S. L.
Braunstein
and
C. M.
Caves
, “
Wringing out better bell inequalities
,”
Ann. Phys.
202
,
22
56
(
1990
).
38.
A.
Peres
, “
Incompatible results of quantum measurements
,”
Phys. Lett. A
151
,
107
108
(
1990
).
39.
N. D.
Mermin
, “
Simple unified form for the major no-hidden-variables theorems
,”
Phys. Rev. Lett.
65
,
3373
3376
(
1990
).
40.
B.
Amaral
and
M. T.
Cunha
,
On Graph Approaches to Contextuality and their Role in Quantum Theory
, SpringerBriefs in Mathematics (
Springer International Publishing
,
2018
).
41.
A.
Schrijver
,
Combinatorial Optimization: Polyhedra and Efficiency
, Algorithms and Combinatorics (
Springer
,
2003
).
42.
M.
Araújo
,
M. T.
Quintino
,
C.
Budroni
,
M. T.
Cunha
, and
A.
Cabello
, “
All noncontextuality inequalities for the n-cycle scenario
,”
Phys. Rev. A
88
,
022118
(
2013
).
43.
P. M.
Pearle
, “
Hidden-variable example based upon data rejection
,”
Phys. Rev. D
2
,
1418
1425
(
1970
).
44.
T.
Bonato
,
M.
Jünger
,
G.
Reinelt
, and
G.
Rinaldi
, “
Lifting and separation procedures for the cut polytope
,”
Math. Program.
146
,
351
378
(
2014
).
45.
R.
Gallego
,
L. E.
Würinger
,
A.
Acín
, and
M.
Navascués
, “
Quantum correlations require multipartite information principles
,”
Phys. Rev. Lett.
107
,
210403
(
2011
).
46.
A.
Yu
and
C.
Oh
, “
State-independent proof of Kochen-Specker theorem with 13 rays
,”
Phys. Rev. Lett.
108
,
030402
(
2012
).
47.
P.
Badziag
,
I.
Bengtsson
,
A.
Cabello
, and
I.
Pitowsky
, “
Universality of state-independent violation of correlation inequalities for noncontextual theories
,”
Phys. Rev. Lett.
103
,
050401
(
2009
).
48.
E.
Wolfe
and
M.
Navascues
, “
The inflation technique solves completely the classical inference problem
,” e-print arXiv/quant-ph:1707.06476 (
2017
).
49.
E.
Wolfe
,
R. W.
Spekkens
, and
T.
Fritz
, “
The inflation technique for causal inference with latent variables
,” e-print arXiv/quant-ph:1609.00672 (
2016
).
50.
P.
Boldi
and
S.
Vigna
, “
Fibrations of graphs
,”
Discrete Math.
243
,
21
66
(
2002
).
51.
E.
Nijholt
,
B.
Rink
, and
J.
Sanders
, “
Graph fibrations and symmetries of network dynamics
,”
J. Differ. Equations
261
,
4861
4896
(
2016
).
You do not currently have access to this content.