The q-qubit Clifford group, that is, the normalizer of the q-qubit Pauli group in U(2q), is a fundamental structure in quantum information with a wide variety of applications. We characterize all irreducible subrepresentations of the two-copy representation φ⊗2 of the Clifford group on the two-fold tensor product of the space of linear operators M2q2. In the companion paper [Helsen et al., e-print arXiv:1701.04299 (2017)], we apply this result to improve the statistics of randomized benchmarking, a method for characterizing quantum systems.

1.
D.
Gottesman
, “
An introduction to quantum error correction and fault-tolerant quantum computation
,”
Proc. Symp. Appl. Math.
68
,
13
(
2010
).
2.
D.
Gross
,
Y.-K.
Liu
,
S. T.
Flammia
,
S.
Becker
, and
J.
Eisert
, “
Quantum state tomography via compressed sensing
,”
Phys. Rev. Lett.
105
(
15
),
150401
(
2010
).
3.
D. P.
DiVincenzo
,
D. W.
Leung
, and
B. M.
Terhal
, “
Quantum data hiding
,”
IEEE Trans. Inf. Theory
48
(
3
),
580
599
(
2002
); e-print arXiv:quant-ph/0103098.
4.
S.
Aaronson
and
D.
Gottesman
, “
Improved simulation of stabilizer circuits
,”
Phys. Rev. A
70
,
052328
(
2004
).
5.
C.
Dankert
,
R.
Cleve
,
J.
Emerson
, and
E.
Livine
, “
Exact and approximate unitary 2-designs and their application to fidelity estimation
,”
Phys. Rev. A
80
(
1
),
012304
(
2009
).
6.
E.
Magesan
,
J. M.
Gambetta
, and
J.
Emerson
, “
Scalable and robust randomized benchmarking of quantum processes
,”
Phys. Rev. Lett.
106
(
18
),
180504
(
2011
).
7.
D.
Gross
,
K.
Audenaert
, and
J.
Eisert
, “
Evenly distributed unitaries: On the structure of unitary designs
,”
J. Math. Phys.
48
(
5
),
052104
(
2007
).
8.
R.
Goodman
and
N. R.
Wallach
,
Symmetry, Representations, and Invariants
, Graduate Texts in Mathematics (
Springer
,
2009
), ISBN: 9780387798516.
9.
H.
Zhu
, “
Multiqubit Clifford groups are unitary 3-designs
,”
Phys. Rev. A
96
(
6
),
062336
(
2017
).
10.
Z.
Webb
, “
The Clifford group forms a unitary 3-design
,”
Quantum Info. Comput.
16
(
15–16
),
1379
1400
(
2016
).
11.
J.
Joel Wallman
and
S. T.
Flammia
, “
Randomized benchmarking with confidence
,”
New J. Phys.
16
(
10
),
103032
(
2014
).
12.
J.
Helsen
,
J. J.
Wallman
,
S. T.
Flammia
, and
S.
Wehner
. “
Multi-qubit randomized benchmarking using few samples
,” e-print arXiv:1701.04299 (
2017
).
13.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
, Readings in Mathematics (
Springer-Verlag
New York
,
2004
), ISBN: 978-1-4612-0979-9.
14.
J. M.
Farinholt
, “
An ideal characterization of the Clifford operators
,”
J. Phys. A: Math. Theor.
47
,
305303
(
2014
).
15.
R. A.
Low
, “
Large deviation bounds for k-designs
,”
Proc. R. Soc. London, Ser. A
465
,
3289
3308
(
2009
).
16.
H.
Zhu
,
R.
Kueng
,
M.
Grassl
, and
D.
Gross
, “
The Clifford group fails gracefully to be a unitary 4-design
,” e-print arXiv:1609.08172 (
2016
).
17.
R.
Kueng
,
H.
Zhu
, and
D.
Gross
. “
Distinguishing quantum states using Clifford orbits
,” e-print arXiv:1609.08595 (
2016
).
18.
R.
Kueng
,
H.
Zhu
, and
D.
Gross
, “
Low rank matrix recovery from Clifford orbits
,” e-print arXiv:1610.08070 (
2016
).
19.
E.
Knill
,
D.
Leibfried
,
R.
Reichle
,
J.
Britton
,
R. B.
Blakestad
,
J. D.
Jost
,
C.
Langer
,
R.
Ozeri
,
S.
Seidelin
, and
D. J.
Wineland
, “
Randomized benchmarking of quantum gates
,”
Phys. Rev. A
77
(
1
),
012307
(
2008
).
20.

Technically the character inner product of the representation C4 rather than CC*CC* is calculated in Ref. 9, but it can be easily seen that the character inner product is invariant under complex conjugation of some or all tensor factors of the representation.

You do not currently have access to this content.