The q-qubit Clifford group, that is, the normalizer of the q-qubit Pauli group in U(2q), is a fundamental structure in quantum information with a wide variety of applications. We characterize all irreducible subrepresentations of the two-copy representation φ⊗2 of the Clifford group on the two-fold tensor product of the space of linear operators . In the companion paper [Helsen et al., e-print arXiv:1701.04299 (2017)], we apply this result to improve the statistics of randomized benchmarking, a method for characterizing quantum systems.
REFERENCES
Technically the character inner product of the representation rather than is calculated in Ref. 9, but it can be easily seen that the character inner product is invariant under complex conjugation of some or all tensor factors of the representation.