There are important conjectures about logarithmic conformal field theories (LCFT’s), which are constructed as a kernel of screening operators acting on the vertex algebra of the rescaled root lattice of a finite-dimensional semisimple complex Lie algebra. In particular, their representation theory should be equivalent to the representation theory of an associated small quantum group. This article solves the case of the rescaled root lattice Bn/2 as a first working example beyond A1/p. We discuss the kernel of short screening operators, its representations, and graded characters. Our main result is that this vertex algebra is isomorphic to a well-known example: The even part of n pairs of symplectic fermions. In the screening operator approach, this vertex algebra appears as an extension of the vertex algebra associated with A1n/2, which are n copies of the even part of one pair of symplectic fermions. The new long screenings give the new global Cn-symmetry. The extension is due to a degeneracy in this particular case: Rescaled long roots still have an even integer norm. For the associated quantum group of divided powers, the first author has previously encountered matching degeneracies: It contains the small quantum group of type A1n and the Lie algebra Cn. Recent results by Farsad, Gainutdinov, and Runkel on symplectic fermions suggest finally the conjectured category equivalence to this quantum group. We also study the other degenerate cases of a quantum group, giving extensions of LCFT’s of type Dn, D4, A2 with larger global symmetry Bn, F4, G2.

1.
Abe
,
T.
, “
A Z2-orbifold model of the symplectic fermionic vertex operator superalgebra
,”
Math. Z.
255
(
4
),
755
792
(
2007
).
2.
Adamović
,
D.
and
Milas
,
A.
, “
On the triplet vertex algebra W(p)
,”
Adv. Math.
217
,
2664
2699
(
2008
).
3.
Adamović
,
D.
and
Milas
,
A.
, “
On W-algebra extensions of (2, p) minimal models: p > 3
,”
J. Algebra
344
,
313
332
(
2011
).
4.
Adamović
,
D.
and
Milas
,
A.
, “
C2-cofinite W-algebras and their logarithmic representations
,” in
Conformal Field Theories and Tensor Categories
, Mathematical Lectures from Peking University, edited by
Bai
,
C.
,
Fuchs
,
J.
,
Huang
,
Y. Z.
,
Kong
,
L.
,
Runkel
,
I.
, and
Schweigert
,
C.
(
Springer
,
2014
), pp.
249
270
.
5.
Andersen
,
H. H.
,
Jantzen
,
J. C.
, and
Soergel
,
W.
, “
Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: Independence of p, Astérisque
,”
Paris Société Mathématique de France
220
(
1994
).
6.
Arakawa
,
T.
, “
Representation theory of W-algebras
,”
Invent. Math.
169
(
2
),
219
320
(
2007
).
7.
Blanchet
,
C.
,
Costantino
,
F.
,
Geer
,
N.
, and
Patureau-Mirand
,
B.
, “
Non semi-simple TQFTs from unrolled quantum sl(2)
,” in
Proceedings of the Gokova Geometry-Topology Conference 2015
(
International Press of Boston, Inc.
,
2016
).
8.
Carqueville
,
N.
and
Flohr
,
M.
, “
Nonmeromorphic operator product expansion and C2-cofiniteness for a family of W-algebras
,”
J. Phys. A: Math. Gen.
39
,
951
966
(
2006
).
9.
Costantino
,
F.
,
Geer
,
N.
, and
Patureau-Mirand
,
B.
, “
Some remarks on the unrolled quantum group of sl(2)
,”
J. Pure Appl. Algebra
219
(
8
),
3238
3262
(
2015
).
10.
Creutzig
,
T.
and
Linshaw
,
A.
, “
Cosets of affine vertex algebras inside larger structures
,” preprint arXiv:1407.8512 (
2014
).
11.
Creutzig
,
T.
and
Gannon
,
T.
, “
Logarithmic conformal field theory, log-modular tensor categories and modular forms
,” preprint arXiv:1605.04630 (
2016
).
12.
Creutzig
,
T.
and
Milas
,
A.
, “
Higher rank partial and false theta functions and representation theory
,” preprint arXiv:1607.08563 (
2016
).
13.
Creutzig
,
T.
,
Gainutdinov
,
A. M.
, and
Runkel
,
I.
, “
A factorisable quasi-Hopf algebra for the triplet Wp-algebra
,” preprint arXiv:1712.07260 (
2017
).
14.
Creutzig
,
T.
,
Kanade
,
S.
, and
McRae
,
R.
, “
Tensor categories for vertex operator superalgebra extensions
,” preprint arXiv:1705.05017 (
2017
).
15.
Davydov
,
A.
and
Runkel
,
I.
, “
Holomorphic symplectic fermions
,” preprint arXiv:1601.06451 (
2016
).
16.
Dong
,
C. Y.
, “
Vertex algebras associated with even lattices
,”
J. Algebra
161
(
1
),
245
265
(
1993
).
17.
Dong
,
C.
and
Lepowsky
,
J.
,
Generalized Vertex Algebras and Relative Vertex Operators
, Progress in Mathematics (
Birkhäuser Basel
,
1993
), Vol. 112.
18.
Dong
,
C.
and
Mason
,
G.
, “
Shifted vertex operators algebras
,”
Math. Proc. Cambridge Philos. Soc.
141
(
1
),
67
80
(
2006
).
19.
Dotsenko
,
Vl. S.
and
Fateev
,
V. A.
,
Nucl. Phys. B
240
,
312
(
1984
).
20.
Farsad
,
V.
,
Gainutdinov
,
A.
, and
Runkel
,
I.
, “
The symplectic fermion ribbon quasi-Hopf algebra and the SL2(Z) action on its center
,” preprint arXiv:1706.08164 (
2017
).
21.
Farsad
,
V.
,
Gainutdinov
,
A.
, and
Runkel
,
I.
, “
.SL2(Z)-action for ribbon quasi-Hopf algebras
,” preprint arXiv: 1702.01086 (
2017
).
22.
Feigin
,
B. L.
and
Frenkel
,
E. V.
, “
A family of representations of affine Lie algebras
,”
Uspekhi Mat. Nauk.
43
(
5
(
263
)),
227
228
(
1988
)
Feigin
,
B. L.
and
Frenkel
,
E. V.
, [Russ. Math. Surv.
43
(
5
),
221
(
1988
) (in English)].
23.
Feigin
,
B. L.
and
Tipunin
,
I. Yu.
, “
Logarithmic CFTs connected with simple Lie algebras
,” preprint arXiv:1002.5047 (
2010
).
24.
Feigin
,
B. L.
,
Gainutdinov
,
A. M.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Yu.
, “
Kazhdan–Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT
,”
Theor. Math. Phys.
148
,
1210
1235
(
2006
)
Feigin
,
B. L.
,
Gainutdinov
,
A. M.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Yu.
, [Teor. Mat. Fiz.
148
,
398
427
(
2006
)].
25.
Feigin
,
B. L.
,
Gainutdinov
,
A. M.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Yu.
, “
Logarithmic extensions of minimal models: Characters and modular transformations
,”
Nucl. Phys. B
757
,
303
343
(
2006
).
26.
Feigin
,
B. L.
,
Gainutdinov
,
A. M.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Yu.
, “
Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center
,”
Commun. Math. Phys.
265
,
47
93
(
2006
).
27.
Felder
,
G.
, “
BRST approach to minimal models
,”
Nucl. Phys. B
317
,
215
236
(
1989
).
28.
Fjelstad
,
J.
,
Fuchs
,
J.
,
Hwang
,
S.
,
Semikhatov
,
A. M.
, and
Tipunin
,
I. Yu.
, “
Logarithmic conformal field theories via logarithmic deformations
,”
Nucl. Phys. B
633
,
379
413
(
2002
).
29.
Frenkel
,
E.
,
Free Field Realizations in Representation Theory and Conformal Field Theory
(
ICM
,
1995
).
30.
Frenkel
,
E.
and
Ben-Zvi
,
D.
,
Vertex Algebras and Algebraic Curves
, Mathematical Surveys and Monographs, 2nd ed. (
American Mathematical Society
,
2004
), Vol. 88.
31.
Fuchs
,
J.
,
Runkel
,
I.
, and
Schweigert
,
C.
, “
TFT construction of RCFT correlators III: Simple currents
,”
Nucl. Phys. B
694
,
277
353
(
2004
).
32.
Gaberdiel
,
M. R.
and
Kausch
,
H. G.
, “
A rational logarithmic conformal field theory
,”
Phys. Lett. B
386
,
131
137
(
1996
).
33.
Gaberdiel
,
M. R.
,
Runkel
,
I.
, and
Wood
,
S.
, “
Fusion rules and boundary conditions in the c = 0 triplet model
,” preprint arXiv:0905.0916 (
2009
).
34.
Gainutdinov
,
A. M.
and
Runkel
,
I.
, “
Symplectic fermions and a quasi-Hopf algebra structure on Ūisl2
,”
J. Algebra
476
,
415
458
(
2017
).
35.
Gainutdinov
,
A.
,
Lentner
,
S.
, and
Ohrmann
,
T.
, “
Factorizable quasi quantum groups and conformal field theory
” (unpublished).
36.
Huang
,
Y.-Z.
,
Lepowsky
,
J.
, and
Zhang
,
L.
, “
Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. I–VIII
,” e-print arXiv:1012.4193, arXiv:1012.4196, arXiv:1012.4197, arXiv:1012.4198, arXiv:1012.4199, arXiv:1012.4202, arXiv:1110.1929, and arXiv:1110.1931.
37.
Kac
,
V.
,
Vertex Algebras for Beginners
, University Lecture Series, 2nd ed. (
American Mathematical Society
,
1998
), Vol. 10.
38.
Kac
,
V.
,
Moseneder Frajria
,
P.
,
Papi
,
P.
, and
Xu
,
F.
, “
Conformal embeddings and simple current extensions
,”
Int. Math. Res. Not.
2015
(
14
),
5229
5288
(
2015
).
39.
Kausch
,
H. G.
, “
Extended conformal algebras generated by multiplet of primary fields
,”
Phys. Lett. B
259
,
448
455
(
1991
).
40.
Kausch
,
H. G.
, “
Symplectic fermions
,”
Nucl. Phys. B
583
,
513
541
(
2000
).
41.
Kerler
,
T.
and
Lyubashenko
,
V.
,
Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners
, Lecture notes in Mathematics (
Springer
,
2001
).
42.
Lentner
,
S.
, “
Vertex algebras constructed from Hopf algebra structures
,” Diploma thesis,
LMU Munich
,
2007
, http://simon.lentner.net/fileadmin/user_upload/Downloadable/Diploma_Thesis_Simon_Lentner.pdf.
43.
Lentner
,
S.
, “
A Frobenius homomorphism for Lusztig’s quantum groups for arbitrary roots of unity
,”
Commun. Contemp. Math.
18
(
3
),
1550040
(
2015
).
44.
Lentner
,
S.
, “
Quantum groups and Nichols algebras acting on conformal quantum field theories
,” preprint arXiv:1702.06431 (
2017
).
45.
Lentner
,
S.
and
Ohrmann
,
T.
, “
Factorizable R-matrices for small quantum groups
,”
SIGMA
13
,
076
(
2017
).
46.
Lusztig
,
G.
, “
Finite-dimensional Hopf algebras arising from quantized universal enveloping algebras
,”
J. Am. Math. Soc.
3
(
1
),
257
296
(
1990
).
47.
MacLane
,
S.
,
Cohomology Theory of Abelian Groups
, in
Proceedings of the International Congress of Mathematicians
(
Birkhäuser Basel
,
Cambridge, MA
,
1950
), pp.
8
14
.
48.
Moore
,
G.
and
Seiberg
,
N.
, “
Classical and quantum conformal field theory
,”
Commun. Math. Phys.
123
(
2
),
177
254
(
1989
).
49.
Nagatomo
,
K.
and
Tsuchiya
,
A.
, “
The triplet vertex operator algebra W(p) and the Restricted Quantum Group Uq(sl2) at q=eπip.
,”
Adv. Stud. Pure Math.
61
,
1
49
(
2011
); e-print arXiv:0902.4607.
50.
Runkel
,
I.
, “
A braided monoidal category for free super-bosons
,” preprint arXiv:1209.5554 (
2012
).
51.
Shimizu
,
K.
, “
Non-degeneracy conditions for braided finite tensor categories
,” preprint arXiv:1602.06534 (
2016
).
52.
Semikhatov
,
A. M.
, in
Virasoro Central Charges for Nichols Algebras
, Mathematical Lectures from Peking University, edited by
Bai
,
C.
,
Fuchs
,
J.
,
Huang
,
Y.-Z.
,
Kong
,
L.
,
Runkel
,
I.
, and
Schweigert
,
C.
(
Springer
,
2014
), Vol. IX, pp.
67
92
; e-print arXiv:1109.1767.
53.
Semikhatov
,
A. M.
and
Tipunin
,
I. Yu.
, “
The Nichols algebra of screenings
,”
Commun. Contemp. Math.
14
,
1250029
(
2012
).
54.
Semikhatov
,
A. M.
and
Tipunin
,
I. Yu.
, “
Logarithmic sl2^ CFT models from Nichols algebras
,”
J. Phys. A: Math. Theor.
46
,
494011
(
2013
).
55.
Tsuchiya
,
A.
and
Wood
,
S.
, “
The tensor structure on the representation category of the Wp triplet algebra
,”
J. Phys. A: Math. Theor.
46
,
445203
(
2013
).
56.
Wakimoto
,
M.
, “
Fock representations of affine Lie algebra A1(1).
,”
Commun. Math. Phys.
104
,
605
609
(
1986
).
You do not currently have access to this content.