In this work, we study the well-posedness of the Cauchy problem associated with the coupled Schrödinger equations with quadratic nonlinearities, which appears modeling problems in nonlinear optics. We obtain the local well-posedness for data in Sobolev spaces with low regularity. To obtain the local theory, we prove new bilinear estimates for the coupling terms of the system in the continuous case. Concerning global results, in the continuous case, we establish the global well-posedness in Hs(R)×Hs(R), for some negatives indexes s. The proof of our global result uses the I-method introduced by Colliander et al.

1.
Angulo
,
J.
and
Linares
,
F.
, “
Periodic pulses of coupled nonlinear Schrödinger equations in optics
,”
Indiana Univ. Math. J.
56
(
2
),
847
878
(
2007
).
2.
Bourgain
,
J.
, “
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations
,”
Geom. Funct. Anal.
3
(
3
),
209
262
(
1993
).
3.
Colin
,
M.
,
Colin
,
T.
, and
Ohta
,
M.
, “
Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction
,”
Ann. Inst. Henri Poincare (C) Non Linear Anal.
26
(
6
),
2211
2226
(
2009
).
4.
Colliander
,
J.
,
Keel
,
M.
,
Staffilani
,
G.
,
Takaoka
,
H.
, and
Tao
,
T.
, “
Global well-posedness for KdV in Sobolev spaces of negative index
,”
Electron. J. Differ. Equations
2001
(
26
),
1
7
.
5.
Colliander
,
J.
,
Keel
,
M.
,
Staffilani
,
G.
,
Takaoka
,
H.
, and
Tao
,
T.
, “
Global well-posedness for Schrödinger equations with derivative
,”
SIAM J. Math. Anal.
33
(
3
),
649
669
(
2001
).
6.
Colliander
,
J.
,
Keel
,
M.
,
Staffilani
,
G.
,
Takaoka
,
H.
, and
Tao
,
T.
, “
Multilinear estimates for periodic KdV equations, and applications
,”
J. Funct. Anal.
211
(
1
),
173
218
(
2004
).
7.
Corcho
,
A. J.
and
Linares
,
F.
, “
Well-posedness for the Schrödinger-Korteweg-de Vries system
,”
Trans. Am. Math. Soc.
359
(
9
),
4089
4106
(
2007
).
8.
Corcho
,
A. J.
and
Matheus
,
C.
, “
Sharp bilinear estimates and well-posedness for the 1-D Schrödinger-Debye system
,”
Differ. Integr. Equations
22
(
3-4
),
357
391
(
2009
).
9.
DeSalvo
,
R.
,
Vanherzeele
,
H.
,
Hagan
,
D.
,
Sheik-Bahae
,
M.
,
Stegeman
,
G.
, and
Van Stryland
,
E.
, “
Self-focusing and self-defocusing by cascaded second-order effects in KTP
,”
Opt. Lett.
17
(
1
),
28
30
(
1992
).
10.
Ginibre
,
J.
,
Tsutsumi
,
Y.
, and
Velo
,
G.
, “
On the Cauchy problem for the Zakharov system
,”
J. Funct. Anal.
151
(
2
),
384
436
(
1997
).
11.
Hayashi
,
N.
,
Ozawa
,
T.
, and
Tanaka
,
K.
, “
On a system of nonlinear Schrödinger equations with quadratic interaction
,”
Ann. Inst. Henri Poincare (C) Non Linear Anal.
30
(
4
),
661
690
(
2013
).
12.
Karamzin
,
Y. N.
and
Sukhorukov
,
A.
, “
Nonlinear interaction of diffracted light beams in a medium with quadratic nonlinearity: Mutual focusing of beams and limitation on the efficiency of optical frequency converters
,”
JETP Lett.
20
(
11
),
339
343
(
1974
).
13.
Kenig
,
C.
,
Ponce
,
G.
, and
Vega
,
L.
, “
Quadratic forms for the 1-D semilinear Schrödinger equation
,”
Trans. Am. Math. Soc.
348
(
8
),
3323
3353
(
1996
).
14.
Li
,
C.
and
Hayashi
,
N.
, “
Recent progress on nonlinear Schrödinger systems with quadratic interactions
,”
Sci. World J.
2014
,
1
.
15.
Menyuk
,
C.
,
Schiek
,
R.
, and
Torner
,
L.
, “
Solitary waves due to χ (2): χ (2) cascading
,”
J. Opt. Soc. Am. B
11
(
12
),
2434
2443
(
1994
).
16.
Pecher
,
H.
, “
The Cauchy problem for a Schrödinger-Korteweg-de Vries system with rough data
,”
Differ. Integr. Equations
18
(
10
),
1147
1174
(
2005
).
17.
Yew
,
A.
, “
Stability analysis of multipulses in nonlinearly-coupled Schrödinger equations
,”
Indiana Univ. Math. J.
49
(
3
),
1079
1124
(
2000
).
You do not currently have access to this content.