Amplitude equations are used to describe the onset of instability in wide classes of partial differential equations (PDEs). One goal of the field is to determine simple universal/generic PDEs, to which many other classes of equations can be reduced, at least on a sufficiently long approximating time scale. In this work, we study the case when the reaction terms are nonlocal. In particular, we consider quadratic and cubic convolution-type nonlinearities. As a benchmark problem, we use the Swift-Hohenberg equation. The resulting amplitude equation is a Ginzburg-Landau PDE, where the coefficients can be calculated from the kernels. Our proof relies on separating critical and noncritical modes in Fourier space in combination with suitable kernel bounds.

1.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
110
(
6
),
064105
(
2013
).
2.
F.
Achleitner
and
C.
Kuehn
, “
On bounded positive stationary solutions for a nonlocal Fisher-KPP equation
,”
Nonlinear Anal.: Theory, Methods Appl.
112
,
15
29
(
2015
).
3.
N.
Ackermann
, “
On a periodic Schrödinger equation with nonlocal superlinear part
,”
Math. Z.
248
(
2
),
423
443
(
2004
).
4.
M.
Alfaro
and
J.
Coville
, “
Rapid travelling waves in the nonlocal Fisher equation connect two unstable states
,”
Appl. Math. Lett.
25
(
12
),
2095
2099
(
2012
).
5.
I. S.
Aranson
and
L.
Kramer
, “
The world of the complex Ginzburg-Landau equation
,”
Rev. Mod. Phys.
74
,
99
143
(
2002
).
6.
P. W.
Bates
,
P. C.
Fife
,
X.
Ren
, and
X.
Wang
, “
Traveling waves in a convolution model for phase transitions
,”
Arch. Rat. Mech. Anal.
138
(
2
),
105
136
(
1997
).
7.
P. W.
Bates
and
C. K. R. T.
Jones
, “
Invariant manifolds for semilinear partial differential equations
,” in
Dynamics Reported
, edited by
U.
Kirchgraber
and
H. O.
Walther
(
Wiley
,
1989
), Vol. 2, pp.
1
37
.
8.
C. M.
Bender
and
S. A.
Orszag
,
Asymptotic Methods and Perturbation Theory
(
Springer
,
1999
).
9.
H.
Berestycki
,
T.
Jin
, and
L.
Silvestre
, “
Propagation in a non local reaction diffusion equation with spatial and genetic trait structure
,”
Nonlinearity
29
,
1434
1466
(
2016
).
10.
H.
Berestycki
,
G.
Nadin
,
B.
Perthame
, and
L.
Ryzhik
, “
The non-local Fisher-KPP equation: Travelling waves and steady states
,”
Nonlinearity
22
,
2813
2844
(
2009
).
11.
A.
Bose
, “
A geometric approach to singularly perturbed nonlocal reaction-diffusion equations
,”
SIAM J. Math. Anal.
31
(
2
),
431
454
(
2000
).
12.
P. C.
Bressloff
, “
Spatiotemporal dynamics of continuum neural fields
,”
J. Phys. A: Math. Theor.
45
,
033001
(
2012
).
13.
J.
Burke
and
E.
Knobloch
, “
Localized states in the generalized Swift-Hohenberg equation
,”
Phys. Rev. E
73
,
056211
(
2006
).
14.
J.
Carr
,
Applications of Centre Manifold Theory
(
Springer
,
1981
).
15.
X.
Chen
, “
Existence, uniqueness, and asymptotic stability of travelling waves in nonlocal evolution equations
,”
Adv. Differ. Equations
2
,
125
160
(
1997
).
16.
S.
Coombes
, “
Waves, bumps, and patterns in neural field theories
,”
Biol. Cybern.
93
,
91
108
(
2005
).
17.
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
2009
).
18.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
(
3
),
851
1112
(
1993
).
19.
J. J.
Duistermaat
and
J. A. C.
Kolk
,
Distributions: Theory and Applications
, Cornerstones (
Birkhäuser Boston, Inc., Boston, MA
,
2010
), translated from the Dutch by
J. P.
van Braam Houckgeest
.
20.
G.
Faye
and
M.
Holzer
, “
Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach
,”
J. Differ. Equations
258
(
7
),
2257
2289
(
2015
).
21.
P. C.
Fife
, “
Some nonclassical trends in parabolic and parabolic-like evolutions
,” in
Trends in Nonlinear Analysis
(
Springer
,
2003
), pp.
153
191
.
22.
S.
Genieys
,
V.
Volpert
, and
P.
Auger
, “
Pattern and waves for a model in population dynamics with nonlocal consumption of resources
,”
Math. Model. Nat. Phenom.
1
(
1
),
63
80
(
2006
).
23.
S. A.
Gourley
, “
Travelling front solutions of a nonlocal Fisher equation
,”
J. Math. Biol.
41
(
3
),
272
284
(
2000
).
24.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
New York, NY
,
1983
).
25.
D.
Henry
,
Geometric Theory of Semilinear Parabolic Equations
(
Springer
,
Berlin Heidelberg, Germany
,
1981
).
26.
R.
Hoyle
,
Pattern Formation: An Introduction to Methods
(
Cambridge University Press
,
2006
).
27.
J.
Kevorkian
and
J. D.
Cole
,
Multiple Scale and Singular Perturbation Methods
(
Springer
,
1996
).
28.
P.
Kirrmann
,
G.
Schneider
, and
A.
Mielke
, “
The validity of modulation equations for extended systems with cubic nonlinearities
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
122
(
1
),
85
91
(
1992
).
29.
C.
Kuehn
,
Multiple Time Scale Dynamics
(
Springer
,
2015
), p.
814
.
30.
Yu. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 3rd edn. (
Springer
,
New York, NY
,
2004
).
31.
J.
Lega
,
J. V.
Moloney
, and
A. C.
Newell
, “
Swift-Hohenberg equation for lasers
,”
Phys. Rev. Lett.
73
(
22
),
2978
2981
(
1994
).
32.
C. D.
Levermore
and
M.
Oliver
, “
The complex Ginzburg-Landau equation as a model problem
,” in
Dynamical Systems and Probabilistic Methods in Partial Differential Equations (Berkeley, 1994)
, edited by
P.
Deift
,
C. D.
Levermore
, and
C. E.
Wayne
(
American Mathematical Soc.
,
1998
), pp.
141
190
.
33.
D. J. B.
Lloyd
,
B.
Sandstede
,
D.
Avitabile
, and
A. R.
Champneys
, “
Localized hexagon patterns of the planar Swift-Hohenberg equation
,”
SIAM J. Appl. Dyn. Syst.
7
(
3
),
1049
1100
(
2008
).
34.
E.
Meron
,
Nonlinear Physics of Ecosystems
(
CRC Press
,
2015
).
35.
A.
Mielke
, “
The Ginzburg-Landau equation in its role as a modulation equation
,” in
Handbook of Dynamical Systems 2
(
Elsevier
,
2002
), pp.
759
834
.
36.
A.
Mielke
, “
Deriving amplitude equations via evolutionary Γ-convergence
,”
Discrete Contin. Dyn. Syst.
35
(
6
),
2679
2700
(
2015
).
37.
A.
Mielke
and
G.
Schneider
, “
Derivation and justification of the complex Ginzburg-Landau equation as a modulation equation
,” in
Dynamical Systems and Probabilistic Methods in Partial Differential Equations (Berkeley, CA, 1994)
, edited by
P.
Deift
,
C. D.
Levermore
, and
C. E.
Wayne
(
American Mathematical Soc.
,
1996
), pp.
191
216
.
38.
D.
Morgan
and
J. H. P.
Dawes
, “
The Swift-Hohenberg equation with a nonlocal nonlinearity
,”
Phys. D
270
,
60
80
(
2014
).
39.
A. J.
Roberts
, “
Planform evolution in convection—an embedded centre manifold
,”
J. Aust. Math. Soc., Ser. B Appl. Math.
34
(
2
),
174
198
(
1992
).
40.
J.
Rubinstein
and
P.
Sternberg
, “
Nonlocal reaction-diffusion equations and nucleation
,”
IMA J. Appl. Math.
48
(
3
),
249
264
(
1992
).
41.
G.
Schneider
, “
A new estimate for the Ginzburg-Landau approximation on the real axis
,”
J. Nonlinear Sci.
4
(
1
),
23
34
(
1994
).
42.
G.
Schneider
, “
Validity and limitation of the Newell-Whitehead equation
,”
Math. Nachr.
176
,
249
263
(
1995
).
43.
G.
Schneider
, “
Diffusive stability of spatial periodic solutions of the Swift-Hohenberg equation
,”
Commun. Math. Phys.
178
(
3
),
679
702
(
1996
).
44.
G.
Schneider
, “
The validity of generalized Ginzburg-Landau equations
,”
Math. Methods Appl. Sci.
19
(
9
),
717
736
(
1996
).
45.
G.
Schneider
, “
Justification of modulation equations for hyperbolic systems via normal forms
,”
NoDEA : Nonlinear Differ. Equations Appl.
5
(
1
),
69
82
(
1998
).
46.
J.
Siebert
,
S.
Alonso
,
M.
Bär
, and
E.
Schöll
, “
Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection
,”
Phys. Rev. E
89
,
052909
(
2014
).
47.
E.
Siero
, “
A recipe for desert
,” Ph.D. thesis,
Leiden University
,
Leiden, Netherlands
,
2016
.
48.
P.
Souplet
, “
Blow-up in nonlocal reaction-diffusion equations
,”
SIAM J. Math. Anal.
29
(
6
),
1301
1334
(
1998
).
49.
A.
van Harten
, “
On the validity of the Ginzburg-Landau equation
,”
J. Nonlinear Sci.
1
(
4
),
397
422
(
1991
).
50.
A.
Vanderbauwhede
and
G.
Iooss
, “
Center manifold theory in infinite dimensions
,” in
Dynamics Reported
(
Springer
,
1992
), pp.
125
163
.
You do not currently have access to this content.