We study the dynamical properties of blowup solutions to the focusing L2-supercritical nonlinear fractional Schrödinger equation i∂tu − (−Δ)su = −|u|αu on , where , , and the initial data is radial with the critical Sobolev exponent sc. To this end, we establish a compactness lemma related to the equation by means of the profile decomposition for bounded sequences in . As a result, we obtain the -concentration of blowup solutions with bounded -norm and the limiting profile of blowup solutions with critical -norm.
REFERENCES
1.
J.
Bergh
and J.
Löfstöm
, Interpolation Spaces
(Springer
, New York
, 1976
).2.
T.
Boulenger
, D.
Himmelsbach
, and E.
Lenzmann
, “Blowup for fractional NLS
,” J. Funct. Anal.
271
, 2569
–2603
(2016
).3.
Y.
Cho
and S.
Lee
, “Strichartz estimates in spherical coordinates
,” Indiana Univ. Math. J.
62
(3
), 991
–1020
(2013
).4.
Y.
Cho
and T.
Ozawa
, “Sobolev inequalities with symmetry
,” Commun. Contemp. Math.
11
(3
), 355
–365
(2009
).5.
Y.
Cho
, T.
Ozawa
, and S.
Xia
, “Remarks on some dispersive estimates
,” Commun. Pure Appl. Anal.
10
(4
), 1121
–1128
(2011
).6.
Y.
Cho
, H.
Hajaiej
, G.
Hwang
, and T.
Ozawa
, “On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity
,” Funkcial. Ekvac.
56
(2
), 193
–224
(2013
).7.
Y.
Cho
, G.
Hwang
, S.
Kwon
, and S.
Lee
, “Profile decompositions and blow-up phenomena of mass critical fractional Schrödinger equations
,” Nonlinear Anal.
86
, 12
–29
(2013
).8.
Y.
Cho
, G.
Hwang
, and T.
Ozawa
, “On the focusing energy-critical fractional nonlinear Schrödinger equations
,” Adv. Differ. Equations
(to be published).https://projecteuclid.org/euclid.ade/15136524459.
M.
Christ
and I.
Weinstein
, “Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation
,” J. Funct. Anal.
100
(1
), 87
–109
(1991
).10.
V. D.
Dinh
, “Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces
,” e-print arXiv:1609.06181 (2016
).11.
V. D.
Dinh
, “On blowup solutions to the focusing mass-critical nonlinear fractional Schrödinger equation
,” Commun. Pure Appl. Anal
(to be published).12.
V. D.
Dinh
, “On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation
,” e-print arXiv:1801.08866 (2018
).13.
B.
Feng
, “On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities
,” Commun. Pure Appl. Anal.
17
(5
), 1785
–1504
(2018
).14.
R. L.
Frank
and E.
Lenzmann
, “Uniqueness of nonlinear ground states for fractional Laplacians in .
,” Acta Math.
210
(2
), 261
–318
(2013
).15.
R. L.
Frank
, E.
Lenzmann
, and L.
Silvestre
, “Uniqueness of radial solutions for the fractional Laplacian
,” Commun. Pure Appl. Math.
69
, 1671
–1725
(2016
).16.
J.
Ginibre
and G.
Velo
, “The global Cauchy problem for the nonlinear Klein-Gordon equation
,” Math. Z.
189
, 487
–505
(1985
).17.
Z.
Guo
and Y.
Wang
, “Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations
,” J. Anal. Math.
124
(1
), 1
–38
(2014
).18.
Q.
Guo
, “A note on concentration for blowup solutions to supercritical Schrödinger equations
,” Proc. Am. Math. Soc.
141
(12
), 4215
–4227
(2013
).19.
Y.
Hong
and Y.
Sire
, “On fractional Schrödinger equations in Sobolev spaces
,” Commun. Pure Appl. Anal.
14
, 2265
–2282
(2015
).20.
T.
Hmidi
and S.
Keraani
, “Blowup theory for the critical nonlinear Schrödinger equation revisited
,” Int. Math. Res. Not.
46
, 2815
–2828
(2005
).21.
A. D.
Ionescu
and F.
Pusateri
, “Nonlinear fractional Schrödinger equations in one dimension
,” J. Funct. Anal.
266
, 139
–176
(2014
).22.
Y.
Ke
, “Remark on the Strichartz estimates in the radial case
,” J. Math. Anal. Appl.
387
, 857
–861
(2012
).23.
C.
Klein
, C.
Sparber
, and P.
Markowich
, “Numerical study of fractional nonlinear Schrödinger equations
,” Proc. R. Soc. A
470
, 20140364
(2014
).24.
N.
Laskin
, “Fractional Schrödinger equation
,” Phys. Rev. E
66
(5
), 056108
(2002
).25.
F.
Merle
and P.
Raphael
, “Blow up of critical norm for some radial L2 super critical nonlinear Schrödinger equations
,” Am. J. Math.
130
(4
), 945
–978
(2008
).26.
Q. H.
Nguyen
, “Sharp Strichartz estimates for water waves systems
,” Trans. Am. Math. Soc
(to be published).27.
C.
Peng
and Q.
Shi
, “Stability of standing waves for the fractional nonlinear Schrödinger equation
,” J. Math. Phys.
59
, 011508
(2018
).28.
29.
S.
Zhu
, “On the blow-up solutions for the nonlinear fractional Schrödinger equation
,” J. Differ. Equations
261
(2
), 1506
–1531
(2016
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.