We study the dynamical properties of blowup solutions to the focusing L2-supercritical nonlinear fractional Schrödinger equation i∂tu − (−Δ)su = −|u|αu on [0,+)×Rd, where d2,d2d1s<1, 4sd<α<4sd2s, and the initial data u(0)=u0ḢscḢs is radial with the critical Sobolev exponent sc. To this end, we establish a compactness lemma related to the equation by means of the profile decomposition for bounded sequences in ḢscḢs. As a result, we obtain the Ḣsc-concentration of blowup solutions with bounded Ḣsc-norm and the limiting profile of blowup solutions with critical Ḣsc-norm.

1.
J.
Bergh
and
J.
Löfstöm
,
Interpolation Spaces
(
Springer
,
New York
,
1976
).
2.
T.
Boulenger
,
D.
Himmelsbach
, and
E.
Lenzmann
, “
Blowup for fractional NLS
,”
J. Funct. Anal.
271
,
2569
2603
(
2016
).
3.
Y.
Cho
and
S.
Lee
, “
Strichartz estimates in spherical coordinates
,”
Indiana Univ. Math. J.
62
(
3
),
991
1020
(
2013
).
4.
Y.
Cho
and
T.
Ozawa
, “
Sobolev inequalities with symmetry
,”
Commun. Contemp. Math.
11
(
3
),
355
365
(
2009
).
5.
Y.
Cho
,
T.
Ozawa
, and
S.
Xia
, “
Remarks on some dispersive estimates
,”
Commun. Pure Appl. Anal.
10
(
4
),
1121
1128
(
2011
).
6.
Y.
Cho
,
H.
Hajaiej
,
G.
Hwang
, and
T.
Ozawa
, “
On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity
,”
Funkcial. Ekvac.
56
(
2
),
193
224
(
2013
).
7.
Y.
Cho
,
G.
Hwang
,
S.
Kwon
, and
S.
Lee
, “
Profile decompositions and blow-up phenomena of mass critical fractional Schrödinger equations
,”
Nonlinear Anal.
86
,
12
29
(
2013
).
8.
Y.
Cho
,
G.
Hwang
, and
T.
Ozawa
, “
On the focusing energy-critical fractional nonlinear Schrödinger equations
,”
Adv. Differ. Equations
(to be published).https://projecteuclid.org/euclid.ade/1513652445
9.
M.
Christ
and
I.
Weinstein
, “
Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation
,”
J. Funct. Anal.
100
(
1
),
87
109
(
1991
).
10.
V. D.
Dinh
, “
Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces
,” e-print arXiv:1609.06181 (
2016
).
11.
V. D.
Dinh
, “
On blowup solutions to the focusing mass-critical nonlinear fractional Schrödinger equation
,”
Commun. Pure Appl. Anal
(to be published).
12.
V. D.
Dinh
, “
On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation
,” e-print arXiv:1801.08866 (
2018
).
13.
B.
Feng
, “
On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities
,”
Commun. Pure Appl. Anal.
17
(
5
),
1785
1504
(
2018
).
14.
R. L.
Frank
and
E.
Lenzmann
, “
Uniqueness of nonlinear ground states for fractional Laplacians in R.
,”
Acta Math.
210
(
2
),
261
318
(
2013
).
15.
R. L.
Frank
,
E.
Lenzmann
, and
L.
Silvestre
, “
Uniqueness of radial solutions for the fractional Laplacian
,”
Commun. Pure Appl. Math.
69
,
1671
1725
(
2016
).
16.
J.
Ginibre
and
G.
Velo
, “
The global Cauchy problem for the nonlinear Klein-Gordon equation
,”
Math. Z.
189
,
487
505
(
1985
).
17.
Z.
Guo
and
Y.
Wang
, “
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations
,”
J. Anal. Math.
124
(
1
),
1
38
(
2014
).
18.
Q.
Guo
, “
A note on concentration for blowup solutions to supercritical Schrödinger equations
,”
Proc. Am. Math. Soc.
141
(
12
),
4215
4227
(
2013
).
19.
Y.
Hong
and
Y.
Sire
, “
On fractional Schrödinger equations in Sobolev spaces
,”
Commun. Pure Appl. Anal.
14
,
2265
2282
(
2015
).
20.
T.
Hmidi
and
S.
Keraani
, “
Blowup theory for the critical nonlinear Schrödinger equation revisited
,”
Int. Math. Res. Not.
46
,
2815
2828
(
2005
).
21.
A. D.
Ionescu
and
F.
Pusateri
, “
Nonlinear fractional Schrödinger equations in one dimension
,”
J. Funct. Anal.
266
,
139
176
(
2014
).
22.
Y.
Ke
, “
Remark on the Strichartz estimates in the radial case
,”
J. Math. Anal. Appl.
387
,
857
861
(
2012
).
23.
C.
Klein
,
C.
Sparber
, and
P.
Markowich
, “
Numerical study of fractional nonlinear Schrödinger equations
,”
Proc. R. Soc. A
470
,
20140364
(
2014
).
24.
N.
Laskin
, “
Fractional Schrödinger equation
,”
Phys. Rev. E
66
(
5
),
056108
(
2002
).
25.
F.
Merle
and
P.
Raphael
, “
Blow up of critical norm for some radial L2 super critical nonlinear Schrödinger equations
,”
Am. J. Math.
130
(
4
),
945
978
(
2008
).
26.
Q. H.
Nguyen
, “
Sharp Strichartz estimates for water waves systems
,”
Trans. Am. Math. Soc
(to be published).
27.
C.
Peng
and
Q.
Shi
, “
Stability of standing waves for the fractional nonlinear Schrödinger equation
,”
J. Math. Phys.
59
,
011508
(
2018
).
28.
H.
Triebel
,
Theory of Function Spaces
(
Basel Birkhäuser
,
1983
).
29.
S.
Zhu
, “
On the blow-up solutions for the nonlinear fractional Schrödinger equation
,”
J. Differ. Equations
261
(
2
),
1506
1531
(
2016
).
You do not currently have access to this content.