We study a noncommutative analog of a spacetime foliated by spacelike hypersurfaces, in both Riemannian and Lorentzian signatures. First, in the classical commutative case, we show that the canonical Dirac operator on the total spacetime can be reconstructed from the family of Dirac operators on the hypersurfaces. Second, in the noncommutative case, the same construction continues to make sense for an abstract family of spectral triples. In the case of Riemannian signature, we prove that the construction yields in fact a spectral triple, which we call a product spectral triple. In the case of Lorentzian signature, we correspondingly obtain a “Lorentzian spectral triple,” which can also be viewed as the “reverse Wick rotation” of a product spectral triple. This construction of “Lorentzian spectral triples” fits well into the Krein space approach to noncommutative Lorentzian geometry.

1.
A.
Connes
,
Noncommutative Geometry
(
Academic Press
,
San Diego, CA
,
1994
).
2.
A.
Connes
, “
On the spectral characterization of manifolds
,”
J. Noncommut. Geom.
7
,
1
82
(
2013
).
3.
K.
van den Dungen
,
M.
Paschke
, and
A.
Rennie
, “
Pseudo-Riemannian spectral triples and the harmonic oscillator
,”
J. Geom. Phys.
73
,
37
55
(
2013
).
4.
K.
van den Dungen
and
A.
Rennie
, “
Indefinite Kasparov modules and pseudo-Riemannian manifolds
,”
Ann. Henri Poincaré
17
,
3255
3286
(
2016
).
5.
A.
Strohmaier
, “
On noncommutative and pseudo-Riemannian geometry
,”
J. Geom. Phys.
56
,
175
195
(
2006
).
6.
W. D.
van Suijlekom
, “
The noncommutative Lorentzian cylinder as an isospectral deformation
,”
J. Math. Phys.
45
,
537
556
(
2004
).
7.
M.
Paschke
and
A.
Sitarz
, “
Equivariant Lorentzian spectral triples
,” e-print arXiv:0611029 (
2006
).
8.
F.
Besnard
, “
On the definition of spacetimes in noncommutative geometry, part II
,” e-print arXiv:1611.07842 (
2016
).
9.
J. W.
Barrett
, “
A Lorentzian version of the non-commutative geometry of the standard model of particle physics
,”
J. Math. Phys.
48
,
012303
(
2007
).
10.
K.
van den Dungen
, “
Krein spectral triples and the fermionic action
,”
Math. Phys. Anal. Geom.
19
,
4
(
2016
).
11.
V.
Moretti
, “
Aspects of noncommutative Lorentzian geometry for globally hyperbolic space-times
,”
Rev. Math. Phys.
15
,
1171
1217
(
2003
).
12.
N.
Franco
, “
Global eikonal condition for Lorentzian distance function in noncommutative geometry
,”
SIGMA
6
,
064
(
2010
).
13.
N.
Franco
, “
Temporal Lorentzian spectral triples
,”
Rev. Math. Phys.
26
,
1430007
(
2014
).
14.
N.
Franco
, “
The Lorentzian distance formula in noncommutative geometry
,”
J. Phys.: Conf. Ser.
968
,
012005
(
2018
).
15.
A.
Rennie
and
B. E.
Whale
, “
Generalised time functions and finiteness of the Lorentzian distance
,”
J. Geom. Phys.
106
,
108
121
(
2016
).
16.
E.
Minguzzi
, “
Causality theory for closed cone structures with applications
,” e-print arXiv:1709.06494 (
2017
).
17.
F.
Besnard
, “
A noncommutative view on topology and order
,”
J. Geom. Phys.
59
,
861
875
(
2009
).
18.
N.
Franco
and
M.
Eckstein
, “
An algebraic formulation of causality for noncommutative geometry
,”
Classical Quantum Gravity
30
,
135007
(
2013
).
19.
N.
Franco
and
M.
Eckstein
, “
Exploring the causal structures of almost commutative geometries
,”
SIGMA
10
,
010
(
2014
).
20.
N.
Franco
and
M.
Eckstein
, “
Causality in noncommutative two-sheeted space-times
,”
J. Geom. Phys.
96
,
42
58
(
2015
).
21.
N.
Bizi
and
F.
Besnard
, “
The disappearance of causality at small scale in almost-commutative manifolds
,”
J. Math. Phys.
58
,
092301
(
2017
).
22.
J.
Aastrup
and
J. M.
Grimstrup
, “
From quantum gravity to quantum field theory via noncommutative geometry
,”
Classical Quantum Gravity
31
,
035018
(
2014
).
23.
E.
Hawkins
, “
Hamiltonian gravity and noncommutative geometry
,”
Commun. Math. Phys.
187
,
471
489
(
1997
).
24.
T.
Kopf
, “
Spectral geometry and causality
,”
Int. J. Mod. Phys. A
13
,
2693
2708
(
1998
).
25.
T.
Kopf
and
M.
Paschke
, “
Spectral quadruples
,”
Mod. Phys. Lett. A
16
,
291
298
(
2001
).
26.
T.
Kopf
and
M.
Paschke
, “
A spectral quadruple for de Sitter space
,”
J. Math. Phys.
43
,
818
846
(
2002
).
27.
M.
Paschke
and
R.
Verch
, “
Local covariant quantum field theory over spectral geometries
,”
Classical Quantum Gravity
21
,
5299
5316
(
2004
).
28.
C.
Bär
,
P.
Gauduchon
, and
A.
Moroianu
, “
Generalized cylinders in semi-Riemannian and spin geometry
,”
Math. Z.
249
,
545
580
(
2005
).
29.
H.
Lawson
and
M.
Michelsohn
,
Spin Geometry
, Princeton Mathematical Series (
Princeton University Press
,
1989
).
30.
H.
Baum
,
Spin-Strukturen und Dirac-Operatoren über Pseudo-Riemannschen Mannigfaltigkeiten
, Teubner-Texte zur Mathematik (
Teubner-Verlag
,
Leipzig
,
1981
), Vol. 41.
31.
J. W.
Milnor
, “
Remarks concerning spin manifolds
,” in
Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse
, edited by
S. S.
Cairns
(
Princeton University Press
,
1965
), pp.
55
62
.
32.
L.
Dąbrowski
and
R.
Percacci
, “
Spinors and diffeomorphisms
,”
Commun. Math. Phys.
106
,
691
704
(
1986
).
33.
J.
Bognár
,
Indefinite Inner Product Spaces, Ergebnisse Mathematik und GrenzGebiete
(
Springer
,
Berlin
,
1974
).
34.
A.
Trautman
, “
Spinors and the Dirac operator on hypersurfaces. I. General theory
,”
J. Math. Phys.
33
,
4011
4019
(
1992
).
35.
J.
Beem
,
P.
Ehrlich
, and
K.
Easley
,
Global Lorentzian Geometry
, 2nd ed., Chapman & Hall/CRC Pure and Applied Mathematics (
Taylor & Francis
,
1996
).
36.
N.
Higson
and
J.
Roe
,
Analytic K-Homology
(
Oxford University Press
,
New York
,
2000
).
37.
A. N.
Bernal
and
M.
Sánchez
, “
Smoothness of time functions and the metric splitting of globally hyperbolic space-times
,”
Commun. Math. Phys.
257
,
43
50
(
2005
).
38.
E.
García-Río
and
D.
Kupeli
,
Semi-Riemannian Maps and Their Applications
, Mathematics and Its Applications (
Springer Netherlands
,
1999
), Vol. 475.
39.
Y.
Choquet-Bruhat
and
S.
Cotsakis
, “
Global hyperbolicity and completeness
,”
J. Geom. Phys.
43
,
345
350
(
2002
).
40.
E.
Poisson
,
A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics
(
Cambridge University Press
,
2004
).
41.
J.
Gracia-Bondía
,
J.
Várilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkhäuser Advanced Texts
,
2001
).
42.
J.
Kaad
and
M.
Lesch
, “
Spectral flow and the unbounded Kasparov product
,”
Adv. Math.
248
,
495
530
(
2013
).
43.
K.
van den Dungen
, “
The index of generalised Dirac-Schrödinger operators
,” e-print arXiv:1710.09206 (
2017
).
You do not currently have access to this content.