We derive an explicit formula for the scalar curvature over a two-torus with a Dirac operator conformally rescaled by a globally diagonalizable matrix. We show that the Gauss-Bonnet theorem holds and extends the result to all Riemann surfaces with Dirac operators modified in the same way.

1.
Arnlind
,
J.
and
Wilson
,
M.
, “
On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere
,”
J. Geom. Phys.
111
,
126
141
(
2017
).
2.
Brzezinski
,
T.
,
Ciccoli
,
N.
,
Dąbrowski
,
L.
, and
Sitarz
,
A.
, “
Twisted reality condition for Dirac operators
,”
Math. Phys. Anal. Geom.
19
(
3
),
16
(
2016
).
3.
Connes
,
A.
and
Fathizadeh
,
F.
, “
The term a4 in the heat kernel expansion of noncommutative tori
,” e-print arXiv:1611.09815.
4.
Connes
,
A.
and
Tretkoff
,
P.
, “
The Gauss–Bonnet theorem for the noncommutative two torus
,” in
Noncommutative Geometry, Arithmetic, and Related Topics
(
Johns Hopkins University Press
,
Baltimore, MD
,
2011
), pp.
141
158
.
5.
Connes
,
A.
and
Moscovici
,
H.
, “
Modular curvature for noncommutative two-tori
,”
J. Am. Math. Soc.
27
,
639
(
2014
).
6.
Dąbrowski
,
L.
and
Sitarz
,
A.
, “
Curved noncommutative torus and Gauss–Bonnet
,”
J. Math. Phys.
54
,
013518
(
2013
).
7.
Dąbrowski
,
L.
and
Sitarz
,
A.
, “
An Asymmetric noncommutative torus
,”
SIGMA Symmetry Integrability Geom. Methods Appl.
11
,
075
(
2015
).
8.
Eckstein
,
M.
,
Sitarz
,
A.
, and
Wulkenhaar
,
R.
, “
The Moyal sphere
,”
J. Math. Phys.
57
,
112301
(
2016
).
9.
Fathi
,
A.
and
Khalkhali
,
M.
, “
On certain spectral invariants of Dirac operators on noncommutative tori
,” e-print arXiv:1504.01174v1.
10.
Fathi
,
A.
,
Ghorbanpour
,
A.
, and
Khalkhali
,
M.
, “
The curvature of the determinant line bundle on the noncommutative two torus
,”
Math. Phys. Anal. Geom.
20
(
2
),
4
(
2017
).
11.
Fathizadeh
,
F.
, “
On the scalar curvature for the noncommutative four torus
,”
J. Math. Phys.
56
(
6
),
062303
(
2015
).
12.
Fathizadeh
,
F.
and
Khalkhali
,
M.
, “
The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure
,”
J. Noncommut. Geom.
6
(
3
),
457
480
(
2012
).
13.
Fathizadeh
,
F.
and
Khalkhali
,
M.
, “
Scalar curvature for the noncommutative two torus
,”
J. Noncommut. Geom.
7
,
1145
1183
(
2013
).
14.
Fathizadeh
,
F.
and
Olivier
,
G.
, “
On the Chern-Gauss-Bonnet theorem and conformally twisted spectral triples for C*-dynamical systems
,”
SIGMA Symmetry Integrability Geom. Methods Appl.
12
,
016
(
2016
).
15.
Floricel
,
R.
,
Ghorbanpour
,
A.
, and
Khalkhali
,
M.
, “
The Ricci curvature in noncommutative geometry
,” e-print arXiv:1612.06688.
16.
Friedman
,
G.
and
Park
,
E.
, “
Unitary equivalence of normal matrices over topological spaces
,”
J. Topol. Anal.
8
(
2
),
313
348
(
2016
).
17.
Guillemin
,
V. W.
, “
A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues
,”
Adv. Math.
55
(
2
),
131
160
(
1985
).
18.
Iochum
,
B.
and
Masson
,
T.
, “
Heat trace for Laplace type operators with non-scalar symbols
,”
J. Geom. Phys.
116
,
90
118
(
2017
).
19.
Kalau
,
W.
and
Walze
,
M.
, “
Gravity, noncommutative geometry and the Wodzicki residue
,”
J. Geom. Phys.
16
,
327
344
(
1995
).
20.
Khalkhali
,
M.
,
Moatadelro
,
A.
, and
Sadeghi
,
S.
, “
A scalar curvature formula for the noncommutative 3-torus
,” e-print arXiv:1610.04740.
21.
Lesch
,
M.
, “
Divided differences in noncommutative geometry: Rearrangement lemma, functional calculus and expansional formula
,”
J. Noncommut. Geom.
11
(
1
),
193
223
(
2017
).
22.
Liu
,
Y.
, “
Modular curvature for toric noncommutative manifolds
,” e-print arXiv:1510.04668.
23.
Loring
,
T.
, “
The torus and noncommutative topology
,” Ph.D. dissertation (
University of California
,
Berkeley
,
1986
).
24.
Nazaikinskii
,
V.
,
Savin
,
A.
,
Schulze
,
B.-W.
, and
Sternin
,
B.
, “
Pseudodifferential operators
,” a draft version of Chapter VII of the book
Differential Operators on Manifolds with Singularities. Analysis and Topology
(to be published), see https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/2469/file/2004_06.pdf.
25.
Pflaum
,
M.
, “
The Normal symbol on Riemannian manifolds
,”
New York J. Math.
4
,
97
125
(
1998
), available at http://nyjm.albany.edu/j/1998/4-8.html.
26.
Rosenberg
,
J.
, “
Levi-Civita’s theorem for noncommutative tori
,”
SIGMA
9
,
071
(
2013
).
27.
Wodzicki
,
M.
, “
Local invariants of spectral asymmetry
,”
Invent. Math.
75
(
1
),
143
178
(
1995
).
You do not currently have access to this content.