We study SU(2) calorons, also known as periodic instantons, and consider invariance under isometries of coupled with a non-spatial isometry called the rotation map. In particular, we investigate the fixed points under various cyclic symmetry groups. Our approach utilises a construction akin to the ADHM construction of instantons—what we call the monad matrix data for calorons—derived from the work of Charbonneau and Hurtubise. To conclude, we present an example of how investigating these symmetry groups can help to construct new calorons by deriving Nahm data in the case of charge 2.
REFERENCES
1.
Abramowitz
, M.
and Stegun
, I. A.
, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(Courier Corporation
, 1964
), Vol. 55.2.
Allen
, J. P.
and Sutcliffe
, P. M.
, “Adhm polytopes
,” J. High Energy Phys.
2013
(5
), 1
–36
.3.
Atiyah
, M. F.
, Hitchin
, N. J.
, Drinfeld
, V. G.
, and Manin
, Y. I.
, “Construction of instantons
,” Phys. Lett. A
65
(3
), 185
–187
(1978
).4.
Atiyah
, M. F.
and Manton
, N. S.
, “Skyrmions from instantons
,” Phys. Lett. B
222
(3
), 438
–442
(1989
).5.
Battye
, R. A.
and Sutcliffe
, P. M.
, “Symmetric skyrmions
,” Phys. Rev. Lett.
79
(3
), 363
(1997
).6.
Braaten
, E.
, Townsend
, S.
, and Carson
, L.
, “Novel structure of static multisoliton solutions in the skyrme model
,” Phys. Lett. B
235
(1-2
), 147
–152
(1990
).7.
Braden
, H. W.
, “Cyclic monopoles, affine toda and spectral curves
,” Commun. Math. Phys.
308
(2
), 303
–323
(2011
).8.
Braden
, H. W.
and Enolski
, V. Z.
, “The construction of monopoles
,” preprint arXiv:1708.09660 (2017
).9.
Bruckmann
, F.
, Nógrádi
, D.
, and van Baal
, P.
, “Constituent monopoles through the eyes of fermion zero-modes
,” Nucl. Phys. B
666
(1
), 197
–229
(2003
).10.
Bruckmann
, F.
and van Baal
, P.
, “Multi-caloron solutions
,” Nucl. Phys. B
645
(1
), 105
–133
(2002
).11.
Chakrabarti
, A.
, “Periodic generalizations of static, self-dual Su (2) gauge fields
,” Phys. Rev. D
35
(2
), 696
(1987
).12.
Charbonneau
, B.
and Hurtubise
, J.
, “Calorons, Nahm’s equations on s1 and bundles over .
,” Commun. Math. Phys.
280
(2
), 315
–349
(2008
).13.
Charbonneau
, B.
and Hurtubise
, J.
, “The Nahm transform for calorons
,” in The Many Facets of Geometry: A Tribute To Nigel Hitchin
(Oxford University Press
, 2010
).14.
Cherkis
, S. A.
, Larrain-Hubach
, A.
, and Stern
, M.
, “Instantons on multi-Taub-NUT spaces I: Asymptotic form and index theorem
,” preprint arXiv:1608.00018 (2016
).15.
Donaldson
, S. K.
, “Instantons and geometric invariant theory
,” Commun. Math. Phys.
93
(4
), 453
–460
(1984
).16.
Donaldson
, S. K.
, “Nahm’s equations and the classification of monopoles
,” Commun. Math. Phys.
96
(3
), 387
–407
(1984
).17.
Furuta
, M.
and Hashimoto
, Y.
, “Invariant instantons on s4
,” J. Fac. Sci., Univ. Tokyo
37
, 585
–600
(1990
), available at http://hdl.handle.net/2261/1753.18.
Garland
, H.
and Murray
, M. K.
, “Kac-moody monopoles and periodic instantons
,” Commun. Math. Phys.
120
(2
), 335
–351
(1988
).19.
Harland
, D. G.
, “Large scale and large period limits of symmetric calorons
,” J. Math. Phys.
48
(8
), 082905
(2007
).20.
Harland
, D. G.
and Ward
, R. S.
, “Chains of skyrmions
,” J. High Energy Phys.
2008
(12
), 093
.21.
Harrington
, B. J.
and Shepard
, H. K.
, “Periodic euclidean solutions and the finite-temperature Yang-Mills gas
,” Phys. Rev. D
17
(8
), 2122
(1978
).22.
Hitchin
, N. J.
, Manton
, N. S.
, and Murray
, M. K.
, “Symmetric monopoles
,” Nonlinearity
8
(5
), 661
(1995
).23.
Jardim
, M.
, “A survey on Nahm transform
,” J. Geom. Phys.
52
(3
), 313
–327
(2004
).24.
Kraan
, T. C.
and van Baal
, P.
, “Periodic instantons with non-trivial holonomy
,” Nucl. Phys. B
533
(1
), 627
–659
(1998
).25.
Lee
, K.
and Lu
, C.
, “Su (2) calorons and magnetic monopoles
,” Phys. Rev. D
58
(2
), 025011
(1998
).26.
Manton
, N. S.
and Sutcliffe
, P. M.
, Topological Solitons
(Cambridge University Press
, 2004
).27.
Manton
, N. S.
and Sutcliffe
, P. M.
, “Platonic hyperbolic monopoles
,” Commun. Math. Phys.
325
(3
), 821
–845
(2014
).28.
Muranaka
, D.
, Nakamula
, A.
, Sawado
, N.
, and Toda
, K.
, “Numerical Nahm transform for 2-caloron solutions
,” Phys. Lett. B
703
(4
), 498
–503
(2011
).29.
Nahm
, W.
, “All self-dual multimonopoles for arbitrary gauge groups
,” in Structural Elements in Particle Physics and Statistical Mechanics
(Springer
, 1983
), pp. 301
–310
.30.
Nakamula
, A.
and Sakaguchi
, J.
, “Multicalorons revisited
,” J. Math. Phys.
51
(4
), 043503
(2010
).31.
Nakamula
, A.
and Sawado
, N.
, “Cyclic calorons
,” Nucl. Phys. B
868
(2
), 476
–491
(2013
).32.
Nakamula
, A.
, Sawado
, N.
, and Takesue
, K.
, “Aspects of c3-symmetric calorons from numerical Nahm transform
,” J. Phys.: Conf. Ser.
563
, 012032
(2014
).33.
Nógrádi
, D.
, “Multi-calorons and their moduli
,” Ph.D. thesis, Institute Lorentz for Theoretical Physics, University of Leiden
, 2005
.34.
Norbury
, P.
and Romão
, N. M.
, “Spectral curves and the mass of hyperbolic monopoles
,” Commun. Math. Phys.
270
(2
), 295
–333
(2007
).35.
Nye
, T. M. W.
, “The geometry of calorons
,” Ph.D. thesis, The University of Edinburgh
, 2001
.36.
Rossi
, P.
, “Propagation functions in the field of a monopole
,” Nucl. Phys. B
149
(1
), 170
–188
(1979
).37.
Sutcliffe
, P. M.
, “Bps monopoles
,” Int. J. Mod. Phys. A
12
(26
), 4663
–4705
(1997
).38.
Sutcliffe
, P. M.
, “Cyclic monopoles
,” Nucl. Phys. B
505
(1-2
), 517
–539
(1997
).39.
Ward
, R. S.
, “Symmetric calorons
,” Phys. Lett. B
582
(3
), 203
–210
(2004
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.