We study SU(2) calorons, also known as periodic instantons, and consider invariance under isometries of S1×R3 coupled with a non-spatial isometry called the rotation map. In particular, we investigate the fixed points under various cyclic symmetry groups. Our approach utilises a construction akin to the ADHM construction of instantons—what we call the monad matrix data for calorons—derived from the work of Charbonneau and Hurtubise. To conclude, we present an example of how investigating these symmetry groups can help to construct new calorons by deriving Nahm data in the case of charge 2.

1.
Abramowitz
,
M.
and
Stegun
,
I. A.
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Corporation
,
1964
), Vol. 55.
2.
Allen
,
J. P.
and
Sutcliffe
,
P. M.
, “
Adhm polytopes
,”
J. High Energy Phys.
2013
(
5
),
1
36
.
3.
Atiyah
,
M. F.
,
Hitchin
,
N. J.
,
Drinfeld
,
V. G.
, and
Manin
,
Y. I.
, “
Construction of instantons
,”
Phys. Lett. A
65
(
3
),
185
187
(
1978
).
4.
Atiyah
,
M. F.
and
Manton
,
N. S.
, “
Skyrmions from instantons
,”
Phys. Lett. B
222
(
3
),
438
442
(
1989
).
5.
Battye
,
R. A.
and
Sutcliffe
,
P. M.
, “
Symmetric skyrmions
,”
Phys. Rev. Lett.
79
(
3
),
363
(
1997
).
6.
Braaten
,
E.
,
Townsend
,
S.
, and
Carson
,
L.
, “
Novel structure of static multisoliton solutions in the skyrme model
,”
Phys. Lett. B
235
(
1-2
),
147
152
(
1990
).
7.
Braden
,
H. W.
, “
Cyclic monopoles, affine toda and spectral curves
,”
Commun. Math. Phys.
308
(
2
),
303
323
(
2011
).
8.
Braden
,
H. W.
and
Enolski
,
V. Z.
, “
The construction of monopoles
,” preprint arXiv:1708.09660 (
2017
).
9.
Bruckmann
,
F.
,
Nógrádi
,
D.
, and
van Baal
,
P.
, “
Constituent monopoles through the eyes of fermion zero-modes
,”
Nucl. Phys. B
666
(
1
),
197
229
(
2003
).
10.
Bruckmann
,
F.
and
van Baal
,
P.
, “
Multi-caloron solutions
,”
Nucl. Phys. B
645
(
1
),
105
133
(
2002
).
11.
Chakrabarti
,
A.
, “
Periodic generalizations of static, self-dual Su (2) gauge fields
,”
Phys. Rev. D
35
(
2
),
696
(
1987
).
12.
Charbonneau
,
B.
and
Hurtubise
,
J.
, “
Calorons, Nahm’s equations on s1 and bundles over P1×P1.
,”
Commun. Math. Phys.
280
(
2
),
315
349
(
2008
).
13.
Charbonneau
,
B.
and
Hurtubise
,
J.
, “
The Nahm transform for calorons
,” in
The Many Facets of Geometry: A Tribute To Nigel Hitchin
(
Oxford University Press
,
2010
).
14.
Cherkis
,
S. A.
,
Larrain-Hubach
,
A.
, and
Stern
,
M.
, “
Instantons on multi-Taub-NUT spaces I: Asymptotic form and index theorem
,” preprint arXiv:1608.00018 (
2016
).
15.
Donaldson
,
S. K.
, “
Instantons and geometric invariant theory
,”
Commun. Math. Phys.
93
(
4
),
453
460
(
1984
).
16.
Donaldson
,
S. K.
, “
Nahm’s equations and the classification of monopoles
,”
Commun. Math. Phys.
96
(
3
),
387
407
(
1984
).
17.
Furuta
,
M.
and
Hashimoto
,
Y.
, “
Invariant instantons on s4
,”
J. Fac. Sci., Univ. Tokyo
37
,
585
600
(
1990
), available at http://hdl.handle.net/2261/1753.
18.
Garland
,
H.
and
Murray
,
M. K.
, “
Kac-moody monopoles and periodic instantons
,”
Commun. Math. Phys.
120
(
2
),
335
351
(
1988
).
19.
Harland
,
D. G.
, “
Large scale and large period limits of symmetric calorons
,”
J. Math. Phys.
48
(
8
),
082905
(
2007
).
20.
Harland
,
D. G.
and
Ward
,
R. S.
, “
Chains of skyrmions
,”
J. High Energy Phys.
2008
(
12
),
093
.
21.
Harrington
,
B. J.
and
Shepard
,
H. K.
, “
Periodic euclidean solutions and the finite-temperature Yang-Mills gas
,”
Phys. Rev. D
17
(
8
),
2122
(
1978
).
22.
Hitchin
,
N. J.
,
Manton
,
N. S.
, and
Murray
,
M. K.
, “
Symmetric monopoles
,”
Nonlinearity
8
(
5
),
661
(
1995
).
23.
Jardim
,
M.
, “
A survey on Nahm transform
,”
J. Geom. Phys.
52
(
3
),
313
327
(
2004
).
24.
Kraan
,
T. C.
and
van Baal
,
P.
, “
Periodic instantons with non-trivial holonomy
,”
Nucl. Phys. B
533
(
1
),
627
659
(
1998
).
25.
Lee
,
K.
and
Lu
,
C.
, “
Su (2) calorons and magnetic monopoles
,”
Phys. Rev. D
58
(
2
),
025011
(
1998
).
26.
Manton
,
N. S.
and
Sutcliffe
,
P. M.
,
Topological Solitons
(
Cambridge University Press
,
2004
).
27.
Manton
,
N. S.
and
Sutcliffe
,
P. M.
, “
Platonic hyperbolic monopoles
,”
Commun. Math. Phys.
325
(
3
),
821
845
(
2014
).
28.
Muranaka
,
D.
,
Nakamula
,
A.
,
Sawado
,
N.
, and
Toda
,
K.
, “
Numerical Nahm transform for 2-caloron solutions
,”
Phys. Lett. B
703
(
4
),
498
503
(
2011
).
29.
Nahm
,
W.
, “
All self-dual multimonopoles for arbitrary gauge groups
,” in
Structural Elements in Particle Physics and Statistical Mechanics
(
Springer
,
1983
), pp.
301
310
.
30.
Nakamula
,
A.
and
Sakaguchi
,
J.
, “
Multicalorons revisited
,”
J. Math. Phys.
51
(
4
),
043503
(
2010
).
31.
Nakamula
,
A.
and
Sawado
,
N.
, “
Cyclic calorons
,”
Nucl. Phys. B
868
(
2
),
476
491
(
2013
).
32.
Nakamula
,
A.
,
Sawado
,
N.
, and
Takesue
,
K.
, “
Aspects of c3-symmetric calorons from numerical Nahm transform
,”
J. Phys.: Conf. Ser.
563
,
012032
(
2014
).
33.
Nógrádi
,
D.
, “
Multi-calorons and their moduli
,” Ph.D. thesis,
Institute Lorentz for Theoretical Physics, University of Leiden
,
2005
.
34.
Norbury
,
P.
and
Romão
,
N. M.
, “
Spectral curves and the mass of hyperbolic monopoles
,”
Commun. Math. Phys.
270
(
2
),
295
333
(
2007
).
35.
Nye
,
T. M. W.
, “
The geometry of calorons
,” Ph.D. thesis,
The University of Edinburgh
,
2001
.
36.
Rossi
,
P.
, “
Propagation functions in the field of a monopole
,”
Nucl. Phys. B
149
(
1
),
170
188
(
1979
).
37.
Sutcliffe
,
P. M.
, “
Bps monopoles
,”
Int. J. Mod. Phys. A
12
(
26
),
4663
4705
(
1997
).
38.
Sutcliffe
,
P. M.
, “
Cyclic monopoles
,”
Nucl. Phys. B
505
(
1-2
),
517
539
(
1997
).
39.
Ward
,
R. S.
, “
Symmetric calorons
,”
Phys. Lett. B
582
(
3
),
203
210
(
2004
).
You do not currently have access to this content.