Complex and real vacuum spaces with both self-dual and anti-self-dual parts of the Weyl tensor being of the type [N] are considered. Such spaces are classified according to two criteria. The first one takes into account the properties of the congruences of totally null geodesic 2-dimensional surfaces (the null strings). The second criterion is the properties of the intersection of these congruences. It is proved that there exist six distinct types of the [N] ⊗ [N] spaces. New examples of the Lorentzian slices of the complex metrics are presented. Some types of [N] ⊗ [N] spaces which do not possess Lorentzian slices are also considered.

1.
Boyer
,
C. P.
,
Finley
,
J. D.
, and
Plebański
,
J. F.
, “
Complex general relativity, H and HH spaces—A survey to one approach
,” in
General Relativity and Gravitation. Einstein Memorial
, edited by
Held
,
A.
(
Plenum
,
New York
,
1980
), Vol. 2, pp.
241
281
.
2.
Chaichi
,
M.
,
García-Río
,
E.
, and
Matsushita
,
Y.
, “
Curvature properties of four-dimensional Walker metrics
,”
Classical Quantum Gravity
22
,
559
(
2005
).
3.
Chudecki
,
A.
, “
Conformal killing vectors in nonexpanding HH-spaces with Λ
,”
Classical Quantum Gravity
27
,
205004
(
2010
).
4.
Chudecki
,
A.
, “
Classification of the killing vectors in nonexpanding HH-spaces with Λ
,”
Classical Quantum Gravity
29
,
135010
(
2012
).
5.
Chudecki
,
A.
, “
Null killing vectors and geometry of null strings in Einstein spaces
,”
Gen. Relativ. Gravitation
46
,
1714
(
2014
).
6.
Chudecki
,
A.
, “
Homothetic killing vectors in expanding HH-spaces with Λ
,”
Int. J. Geom. Methods Mod. Phys.
10
(
1
),
1250077
(
2013
).
7.
Chudecki
,
A.
and
Dobrski
,
M.
, “
Proper conformal symmetries in self-dual Einstein spaces
,”
J. Math. Phys.
55
,
082502
(
2014
).
8.
Chudecki
,
A.
and
Przanowski
,
M.
, “
On twisting type [N] ⊗ [N] Ricci flat complex space times with two homothetic symmetries
,”
J. Math. Phys.
59
,
042504
(
2018
).
9.
Díaz-Ramos
,
J. C.
,
García-Río
,
E.
, and
Vázquez-Lorenzo
,
R.
, “
Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators
,”
J. Geom. Anal.
16
,
39
(
2006
).
10.
Dunajski
,
M.
and
Tod
,
P.
, “
Self-dual conformal gravity
,”
Commun. Math. Phys.
331
(
1
),
351
373
(
2014
).
11.
Finley
,
J. D.
, “
Toward real-valued HH spaces: Twisting type N
, in
Gravitation and Geometry a Volume in Honour of I. Robinson
, edited by
Rindler
,
W.
and
Trautman
,
A.
(
Bibliopolis
,
Naples
,
1987
), p.
131
.
12.
Finley
,
J. D.
, “
Equations for complex-valued twisting, type-N, vacuum solutions with one or two Killing/homothetic vectors
,” e-print arXiv:gr-gc/0108055v1 (
2001
).
13.
Finley
,
J. D.
and
Plebański
,
J. F.
, “
The intrinsic spinorial structure of hyperheavens
,”
J. Math. Phys.
17
,
2207
(
1976
).
14.
Finley
,
J. D.
and
Plebański
,
J. F.
, “
Equations for twisting, type-N, vacuum Einstein spaces without a need for Killing vectors
,”
J. Geom. Phys.
8
,
173
193
(
1992
).
15.
Hauser
,
I.
, “
Type-N gravitational field with twist
,”
Phys. Rev. Lett.
33
,
1112
(
1974
).
16.
Nurowski
,
P.
and
An
,
D.
, “
Twistor space for rolling bodies
,”
Commun. Math. Phys.
326
(
2
),
393
414
(
2013
).
17.
Nurowski
,
P.
,
Bor
,
G.
, and
Lamoneda
,
L. H.
, “
The dancing metric, G2-symmetry and projective rolling
,”
Trans. Am. Math. Soc.
370
,
4433
4481
(
2018
).
18.
Plebański
,
J. F.
and
Robinson
,
I.
, “
Left-degenerate vacuum metrics
,”
Phys. Rev. Lett.
37
,
493
(
1976
).
19.
Plebański
,
J. F.
and
Robinson
,
I.
, “
The complex vacuum metric with minimally degenerated conformal curvature
,” in
Asymptotic Structure of Space-Time
, edited by
Esposito
,
F. P.
and
Witten
,
L.
(
Plenum Publishing Corporation
,
New York
,
1977
), pp.
361
406
20.
Plebański
,
J. F.
and
Rózga
,
K.
, “
The optics of null strings
,”
J. Math. Phys.
25
,
1930
(
1984
).
21.
Plebański
,
J. F.
and
Torres del Castillo
,
G. F.
, “
.HH spaces with an algebraically degenerate right side
,”
J. Math. Phys.
23
1349
(
1982
)
22.
Przanowski
,
M.
and
Plebański
,
J. F.
, “
Generalized Goldberg-Sachs theorems in complex and real space-times II
,”
Acta Phys. Pol., B
10
,
573
(
1979
).
23.
Rózga
,
K.
, “
Real slices of complex spacetime in general relativity
,”
Rep. Math. Phys.
11
,
197
(
1977
).
24.
Sonnleitner
,
A.
and
Finley
,
J. D.
, “
The form of killing vectors in expanding HH spaces
,”
J. Math. Phys.
23
(
1
),
116
(
1982
).
25.
Stephani
,
H.
,
Kramer
,
D.
,
MacCallum
,
M. A. H.
,
Hoenselaers
,
C.
, and
Herlt
,
E.
,
Exact Solutions to Einstein’s Field Equations
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2003
).
You do not currently have access to this content.