Complex and real vacuum spaces with both self-dual and anti-self-dual parts of the Weyl tensor being of the type [N] are considered. Such spaces are classified according to two criteria. The first one takes into account the properties of the congruences of totally null geodesic 2-dimensional surfaces (the null strings). The second criterion is the properties of the intersection of these congruences. It is proved that there exist six distinct types of the [N] ⊗ [N] spaces. New examples of the Lorentzian slices of the complex metrics are presented. Some types of [N] ⊗ [N] spaces which do not possess Lorentzian slices are also considered.
REFERENCES
1.
Boyer
, C. P.
, Finley
, J. D.
, and Plebański
, J. F.
, “Complex general relativity, and spaces—A survey to one approach
,” in General Relativity and Gravitation. Einstein Memorial
, edited by Held
, A.
(Plenum
, New York
, 1980
), Vol. 2, pp. 241
–281
.2.
Chaichi
, M.
, García-Río
, E.
, and Matsushita
, Y.
, “Curvature properties of four-dimensional Walker metrics
,” Classical Quantum Gravity
22
, 559
(2005
).3.
Chudecki
, A.
, “Conformal killing vectors in nonexpanding -spaces with Λ
,” Classical Quantum Gravity
27
, 205004
(2010
).4.
Chudecki
, A.
, “Classification of the killing vectors in nonexpanding -spaces with Λ
,” Classical Quantum Gravity
29
, 135010
(2012
).5.
Chudecki
, A.
, “Null killing vectors and geometry of null strings in Einstein spaces
,” Gen. Relativ. Gravitation
46
, 1714
(2014
).6.
Chudecki
, A.
, “Homothetic killing vectors in expanding -spaces with Λ
,” Int. J. Geom. Methods Mod. Phys.
10
(1
), 1250077
(2013
).7.
Chudecki
, A.
and Dobrski
, M.
, “Proper conformal symmetries in self-dual Einstein spaces
,” J. Math. Phys.
55
, 082502
(2014
).8.
Chudecki
, A.
and Przanowski
, M.
, “On twisting type [N] ⊗ [N] Ricci flat complex space times with two homothetic symmetries
,” J. Math. Phys.
59
, 042504
(2018
).9.
Díaz-Ramos
, J. C.
, García-Río
, E.
, and Vázquez-Lorenzo
, R.
, “Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators
,” J. Geom. Anal.
16
, 39
(2006
).10.
Dunajski
, M.
and Tod
, P.
, “Self-dual conformal gravity
,” Commun. Math. Phys.
331
(1
), 351
–373
(2014
).11.
Finley
, J. D.
, “Toward real-valued spaces: Twisting type N
, in Gravitation and Geometry a Volume in Honour of I. Robinson
, edited by Rindler
, W.
and Trautman
, A.
(Bibliopolis
, Naples
, 1987
), p. 131
.12.
Finley
, J. D.
, “Equations for complex-valued twisting, type-N, vacuum solutions with one or two Killing/homothetic vectors
,” e-print arXiv:gr-gc/0108055v1 (2001
).13.
Finley
, J. D.
and Plebański
, J. F.
, “The intrinsic spinorial structure of hyperheavens
,” J. Math. Phys.
17
, 2207
(1976
).14.
Finley
, J. D.
and Plebański
, J. F.
, “Equations for twisting, type-N, vacuum Einstein spaces without a need for Killing vectors
,” J. Geom. Phys.
8
, 173
–193
(1992
).15.
Hauser
, I.
, “Type-N gravitational field with twist
,” Phys. Rev. Lett.
33
, 1112
(1974
).16.
Nurowski
, P.
and An
, D.
, “Twistor space for rolling bodies
,” Commun. Math. Phys.
326
(2
), 393
–414
(2013
).17.
Nurowski
, P.
, Bor
, G.
, and Lamoneda
, L. H.
, “The dancing metric, G2-symmetry and projective rolling
,” Trans. Am. Math. Soc.
370
, 4433
–4481
(2018
).18.
Plebański
, J. F.
and Robinson
, I.
, “Left-degenerate vacuum metrics
,” Phys. Rev. Lett.
37
, 493
(1976
).19.
Plebański
, J. F.
and Robinson
, I.
, “The complex vacuum metric with minimally degenerated conformal curvature
,” in Asymptotic Structure of Space-Time
, edited by Esposito
, F. P.
and Witten
, L.
(Plenum Publishing Corporation
, New York
, 1977
), pp. 361
–406
20.
Plebański
, J. F.
and Rózga
, K.
, “The optics of null strings
,” J. Math. Phys.
25
, 1930
(1984
).21.
Plebański
, J. F.
and Torres del Castillo
, G. F.
, “. spaces with an algebraically degenerate right side
,” J. Math. Phys.
23
1349
(1982
)22.
Przanowski
, M.
and Plebański
, J. F.
, “Generalized Goldberg-Sachs theorems in complex and real space-times II
,” Acta Phys. Pol., B
10
, 573
(1979
).23.
Rózga
, K.
, “Real slices of complex spacetime in general relativity
,” Rep. Math. Phys.
11
, 197
(1977
).24.
Sonnleitner
, A.
and Finley
, J. D.
, “The form of killing vectors in expanding spaces
,” J. Math. Phys.
23
(1
), 116
(1982
).25.
Stephani
, H.
, Kramer
, D.
, MacCallum
, M. A. H.
, Hoenselaers
, C.
, and Herlt
, E.
, Exact Solutions to Einstein’s Field Equations
, 2nd ed. (Cambridge University Press
, Cambridge
, 2003
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.