An analogy with real Clifford algebras on even-dimensional vector spaces suggests assigning an ordered pair (s, t) of space and time dimensions (or equivalently an ordered pair (m, n) of metric and KO dimensions) modulo 8 to any algebraic structure (that we call CPT corepresentation) represented over a Hilbert space by two self-adjoint involutions and an anti-unitary operator having specific commutation relations. It is shown that this assignment is compatible with the tensor product: the space and time dimensions of the tensor product of two CPT corepresentations are the sums of the space and time dimensions of its factors, and the same holds for the metric and KO dimensions. This could provide an interpretation of the presence of such algebras in PT-symmetric Hamiltonians or the description of topological matter. This construction is used to build an indefinite (i.e., pseudo-Riemannian) version of the spectral triple of noncommutative geometry, defined over a Krein space and classified by the pair (m, n) instead of the KO dimension only. Within this framework, we can express the Lagrangian (both bosonic and fermionic) of a Lorentzian almost-commutative spectral triple. We exhibit a space of physical states that solves the fermion-doubling problem. The example of quantum electrodynamics is described.

1.
T.
Morimoto
and
A.
Furusaki
,
Phys. Rev. B
88
,
125129
(
2013
).
2.
C.-K.
Chiu
,
J. C. Y.
Teo
,
A. P.
Schnyder
, and
S.
Ryu
,
Rev. Mod. Phys.
88
,
035005
(
2016
).
3.
M. F.
Atiyah
,
R.
Bott
, and
A.
Shapiro
,
Topology
3
(
Suppl. 1
),
3
(
1964
).
4.
M.
Karoubi
,
K-Theory: An Introduction
(
Springer
,
Berlin
,
2008
).
5.
A.
Connes
,
J. Math. Phys.
36
,
6194
(
1995
).
6.
B. A.
Bernevig
and
T. L.
Hugues
,
Topological Insulators and Topological Superconductors
(
Princeton University Press
,
Princeton
,
2013
).
7.
K.
van den Dungen
,
Math. Phys. Anal. Geom.
19
,
4
(
2016
).
8.
H.
Baum
,
Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten
(
Teubner
,
Lepzig
,
1981
).
9.
P. L.
Robinson
,
Glasgow Math. J.
30
,
263
(
1988
).
10.
F. R.
Harvey
,
Spinors and Calibrations
(
Academic Press
,
Boston
,
1990
).
11.
W.
Pauli
,
Ann. Inst. Henri Poincaré
6
,
109
(
1936
), available at http://www.numdam.org/item?id=AIHP_1936__6_2_109_0.
12.
T.
Kugo
and
P.
Townsend
,
Nucl. Phys. B
221
,
357
(
1983
).
13.
14.
M. A.
de Andrade
,
M.
Rojas
, and
F.
Toppan
,
Int. J. Mod. Phys. A
16
,
4453
(
2001
).
15.
D. S.
Shirokov
,
Theor. Math. Phys.
175
,
454
(
2013
).
16.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
McGraw-Hill
,
New York
,
1980
).
17.
A.
Connes
and
M.
Marcolli
,
Noncommutative Geometry, Quantum Fields and Motives
(
American Mathematical Soc.
,
Providence
,
2008
).
18.
M. J.
Duff
and
J.
Kalkkinen
,
Nucl. Phys. B
758
,
161
(
2006
).
19.
M.
Berg
,
C.
Dewitt-Morette
,
S.
Gwo
, and
E.
Kramer
,
Rev. Math. Phys.
13
,
953
(
2001
).
20.
V. V.
Varlamov
,
Adv. Appl. Clifford Algebr.
25
,
487
(
2015
).
21.
M.
Budinich
,
J. Math. Phys.
57
,
071703
(
2016
).
22.
H.
Schulz-Baldes
and
C.
Villegas-Blas
,
Math. Nachr.
290
,
1840
(
2017
).
23.
D. J. H.
Garling
,
Clifford Algebras: An Introduction
, Volume 78 of London Mathematical Society Student Texts (
Cambridge University Press
,
Cambridge
,
2011
).
24.
E.
Wigner
,
Group Theory
(
Academic Press
,
New York
,
1959
).
25.
H. B.
Lawson
, Jr.
and
M.-L.
Michelsohn
,
Spin Geometry
(
Princeton University Press
,
Princeton
,
1989
).
26.
A.
Mostafazadeh
,
J. Math. Phys.
43
,
205
(
2002
).
27.
T.
Tanaka
,
J. Phys. A: Math. Gen.
39
,
14175
(
2006
).
28.
P. D.
Manneheim
,
Phys. Lett. B
753
,
288
(
2016
).
29.
30.
P. A. M.
Dirac
,
Proc. R. Soc. A
180
,
1
(
1942
).
31.
H.
Kragh
,
Dirac a Scientific Biography
(
Cambridge University Press
,
Cambridge
,
1990
).
32.
K.
van den Dungen
,
M.
Paschke
, and
A.
Rennie
,
J. Geom. Phys.
73
,
37
(
2013
).
33.
S. S.
Horuzhy
and
A. V.
Voronin
,
Commun. Math. Phys.
123
,
677
(
1989
).
34.
N.
Nakanishi
and
I.
Ojima
,
Covariant Operator Formalism of Gauge Theories and Quantum Gravity
(
World Scientific
,
Singapore
,
1990
).
35.
F.
Strocchi
,
An Introduction to Non-Perturbative Foundations of Quantum Field Theory
(
Oxford Science Publications
,
Oxford
,
2013
).
36.
W.
van Suijlekom
,
J. Math. Phys.
45
,
537
(
2004
).
37.
M.
Paschke
and
A.
Sitarz
, “
Equivariant Lorentzian spectral triples
,” e-print arXiv:math-ph/0611029 (
2006
).
38.
M.
Marcolli
,
Comm. Numb. Theor. Phys.
2
,
421
(
2008
).
39.
F.
Besnard
and
N.
Bizi
,
J. Geom. Phys.
123
,
292
(
2018
).
40.
J.
Bognár
,
Indefinite Inner Product Spaces
(
Springer
,
Berlin
,
1974
).
42.
E.
Hawkins
,
Commun. Math. Phys.
187
,
471
(
1997
).
43.
F.
Lizzi
,
G.
Mangano
,
G.
Miele
, and
G.
Sparano
,
Phys. Rev. D
55
,
6357
(
1997
).
44.
J. M.
Gracia-Bondía
,
B.
Iochum
, and
T.
Schücker
,
Phys. Lett. B
416
,
123
(
1997
).
45.
T.
Kopf
,
Int. J. Mod. Phys. A
13
,
2693
(
1998
).
46.
C. P.
Martín
,
J. M.
Gracia-Bondía
, and
J.
Várilly
,
Phys. Rep.
294
,
363
(
1998
).
47.
K.
Elsner
,
Elektroschwaches Modell und Standardmodell in der nichtkommutativen Geometrie
(
Diplomarbeit, Philipps Universität Marburg
,
1999
).
48.
T.
Kopf
,
Int. J. Mod. Phys. B
14
,
2359
(
2000
).
49.
T.
Kopf
and
M.
Paschke
,
Mod. Phys. Lett. A
16
,
291
(
2001
).
50.
T.
Kopf
and
M.
Paschke
,
J. Math. Phys.
43
,
818
(
2002
).
51.
P.
Bieliavsky
,
M.
Rooman
, and
P.
Spindel
,
Nucl. Phys. B
645
,
349
(
2002
).
52.
J. W.
Barrett
,
J. Math. Phys.
48
,
012303
(
2007
).
53.
V.
Moretti
,
Rev. Math. Phys.
15
,
1171
(
2003
).
54.
M.
Paschke
and
R.
Verch
,
Classical Quantum Gravity
21
,
5299
(
2004
).
55.
P.
Bieliavsky
,
S.
Detournay
,
P.
Spindel
, and
M.
Rooman
,
J. High Energy Phys.
2004
(
06
),
031
.
56.
P.
Bieliavsky
,
S.
Detournay
,
P.
Spindel
, and
M.
Rooman
, in
Noncommutative Geometry and Physics
, Lecture Notes in Pure and Applied Mathematics, edited by
Y.
Maeda
,
N.
Tose
,
N.
Miyazaki
,
S.
Watamura
, and
D.
Sternheimer
(
World Scientific
,
New Jersey
,
2005
), pp.
17
33
.
57.
T.
Kopf
, in
Fundamental Interactions: Proceedings of the 21th Lake Louise Winter Institute
, edited by
A.
Astbury
,
F.
Khanna
, and
R.
Moore
(
2006
), Vol. 21, pp.
240
243
.
58.
J.-H.
Jureit
,
T.
Krajewski
,
T.
Schücker
, and
C. A.
Stephan
,
Acta Phys. Pol. B
38
,
3181
(
2007
).
59.
M.
Paschke
, in
Quantum Gravity
, edited by
B.
Fauser
,
J.
Tolksdorf
, and
E.
Zeidler
(
Birkhäuser
,
Basel
,
2007
), pp.
127
150
.
60.
P.
Bieliavsky
,
L.
Claessens
,
D.
Sternheimer
, and
Y.
Voglaire
, in
Poisson Geometry in Mathematics and Physics
, Volume 450 of Contemporary Mathematics, edited by
G.
Ditto
,
J.-H.
Lu
,
Y.
Maeda
, and
A.
Weinstein
(
American Mathematical Soc.
,
Providence
,
2008
), pp.
1
24
.
62.
M.
Borris
and
R.
Verch
,
Commun. Math. Phys.
293
,
399
(
2010
).
63.
W.
Nelson
and
M.
Sakellariadou
,
Phys. Rev. D
81
,
085038
(
2010
).
64.
R.
Verch
,
Acta Phys. Pol. B Proc. Suppl.
4
,
507
(
2011
).
65.
C.
Estrada
and
M.
Marcolli
,
Int. J. Geom. Methods Mod. Phys.
10
,
1250086
(
2013
).
66.
N.
Franco
and
M.
Eckstein
,
Classical Quantum Gravity
30
,
135007
(
2013
).
67.
N.
Franco
and
M.
Eckstein
, in
Mathematical Structures of the Universe
, edited by
M. H. M.
Eckstein
and
S.
Szybka
(
Copernicus Center Press
,
2014
), pp.
315
340
.
68.
N.
Franco
,
Rev. Math. Phys.
26
,
1430007
(
2014
).
69.
N.
Franco
and
M.
Eckstein
,
Symmetry, Integrability Geom.: Methods Appl.
10
,
010
(
2014
).
70.
M.
Eckstein
and
N.
Franco
, in
Proceedings of the Conference on Frontiers of Fundamental Physics 14
, Proceedings of Science, Vol. FFP14, edited by
E.
Kajfasz
,
T.
Masson
, and
R.
Triay
(
SISSA
,
Trieste
,
2015
), p.
138
.
71.
F.
Besnard
,
J. Phys.: Conf. Ser.
634
,
012009
(
2015
).
72.
N.
Franco
and
M.
Eckstein
,
J. Geom. Phys.
96
,
42
(
2015
).
73.
F.
D’Andrea
,
M. A.
Kurkov
, and
F.
Lizzi
,
Phys. Rev. D
94
,
025030
(
2016
).
74.
K.
van den Dungen
and
A.
Rennie
,
Ann. Henri Poincaré
17
,
3255
(
2016
).
75.
M.
Eckstein
,
N.
Franco
, and
T.
Miller
,
Phys. Rev. D
95
,
061701(R)
(
2017
).
76.
N.
Franco
and
J.-C.
Wallet
, in
Noncommutative Geometry and Optimal Transport
, Volume 676 of Contemporary Mathematics, edited by
P.
Martinetti
and
J.-C.
Wallet
(
American Mathematical Soc.
,
2016
), pp.
147
173
.
77.
A.
Watcharangkool
and
M.
Sakellariadou
,
Phys. Rev. D
95
,
025027
(
2017
).
78.
A.
Devastato
,
S.
Farnsworth
,
F.
Lizzi
, and
P.
Martinetti
,
J. High Energy Phys.
03
,
089
(
2018
).
79.
N.
Franco
,
J. Phys.: Conf. Ser.
968
,
012005
(
2018
).
80.
N.
Franco
, in
Proceedings of the 6th International Conference on New Frontiers in Physics
, preprint arXiv:1711.05057 (
2018
).
81.
K.
van den Dungen
, e-print arXiv:1711.07299.
82.
F.
Besnard
, e-print arXiv:1611.07842.
83.
F. J.
Vanhecke
,
Lett. Math. Phys.
50
,
157
(
1999
).
84.
L.
Da̧rowski
and
G.
Dossena
,
Inter. J. Geom. Methods Mod. Phys.
8
,
1833
(
2011
).
85.
F. J.
Vanhecke
,
A. R.
da Silva
, and
C.
Sigaud
,
Braz. J. Phys.
42
,
471
(
2012
).
86.
B.
Ćaćić
,
Lett. Math. Phys.
103
,
793
(
2013
).
87.
S.
Farnsworth
,
J. Math. Phys.
58
,
023507
(
2017
).
88.
S.
Guin
, e-print arXiv:1712.00986.
89.
A.
Connes
and
J.
Lott
,
Nucl. Phys. B, Proc. Suppl.
18
,
29
(
1990
).
90.
K.
Elsner
,
Modern Phys. Lett. A
16
,
241
(
2001
).
91.
K.
Elsner
,
H.
Neumann
, and
H.
Upmeier
, in
Noncommutative Geometry and the Standard Model of Elementary Particles
, Volume 596 of Lecture Notes in Physics, edited by
F.
Scheck
,
H.
Upmeier
, and
W.
Werner
(
Springer
,
Berlin
,
2002
), pp.
152
171
.
92.
K.
Elsner
,
H.
Neumann
, and
H.
Upmeier
, in
Noncommutative Geometry and the Standard Model of Elementary Particles
, Volume 596 of Lecture Notes in Physics, edited by
F.
Scheck
,
H.
Upmeier
, and
W.
Werner
(
Springer
,
Berlin
,
2002
), pp.
172
217
.
93.
W. D.
van Suijlekom
,
Adv. Math.
290
,
682
(
2016
).
94.
M. A.
Kurkov
,
F.
Lizzi
, and
D.
Vassilevich
,
Phys. Lett. B
731
,
311
(
2014
).
95.
S.
Lazzarini
and
T.
Schücker
,
Phys. Lett. B
510
,
277
(
2001
).
96.
A.
Connes
, in
Séminaire N. Bourbaki, 1995-1996, Exposé No. 816
(
Société Mathématique de France
,
1996
), pp.
313
349
.
97.
J.
Baez
and
J.
Huerta
,
Bull. Am. Math. Soc.
47
,
483
(
2010
).
98.
K.
van den Dungen
and
W.
van Suijlekom
,
J. Noncommutative Geom.
7
,
433
(
2013
).
99.
B.
Iochum
,
D.
Kastler
, and
T.
Schücker
,
J. Math. Phys.
36
,
6232
(
1995
).
100.
A.
Connes
,
Noncommutative Geometry
(
Academic Press
,
San Diego
,
1994
).
101.
N.
Bizi
, Ph.D. thesis,
Sorbonne Université
,
2018
.
102.
R.
Shaw
,
J. Math. Phys.
30
,
1971
(
1989
).
103.
G. N.
Parfionov
and
R. R.
Zapatrin
,
J. Math. Phys.
41
,
7122
(
2000
).
104.
N.
Franco
,
Symmetry, Integrability Geom.: Methods Appl.
6
,
064
(
2010
).
105.
A.
Rennie
and
B. E.
Whale
,
J. Geom. Phys.
106
,
108
(
2016
).
106.
A.
Rennie
and
B. E.
Whale
,
J. Geom. Phys.
117
,
277
(
2017
).
107.
E.
Minguzzi
, e-print arXiv:1709.06494.
108.
E.
Minguzzi
,
J. Phys.: Conf. Ser.
968
,
012009
(
2018
).
109.
C.
Bär
and
A.
Strohmaier
,
Commun. Math. Phys.
347
,
703
(
2016
).
You do not currently have access to this content.