We give an upper bound of the relative entanglement entropy of the ground state of a massive Dirac-Majorana field across two widely separated regions A and B in a static slice of an ultrastatic Lorentzian spacetime. Our bound decays exponentially in dist(A, B) at a rate set by the Compton wavelength and the spatial scalar curvature. The physical interpretation of our result is that, on a manifold with positive spatial scalar curvature, one cannot use the entanglement of the vacuum state to teleport one classical bit from A to B if their distance is of the order of the maximum of the curvature radius and the Compton wavelength or greater.

1.
Araki
,
H.
, “
On quasifree states of CAR and Bogoliubov automorphisms
,”
Publ. Res. Inst. Math. Sci.
6
,
385
442
(
1970
).
2.
Araki
,
H.
, “
Relative entropy of states of von Neumann algebras
,”
Publ. Res. Inst. Math. Sci.
11
,
809
833
(
1976
).
3.
Araki
,
H.
, “
Relative entropy of states of von Neumann algebras II
,”
Publ. Res. Inst. Math. Sci.
13
,
173
192
(
1977
).
4.
Balslev
,
E.
,
Manuceau
,
J.
, and
Verbeure
,
A.
, “
Representations of anticommutation relations and Bogolioubov transformations
,”
Commun. Math. Phys.
8
,
315
326
(
1968
).
5.
Balslev
,
E.
and
Verbeure
,
A.
, “
States on Clifford algebras
,”
Commun. Math. Phys.
7
,
55
76
(
1968
).
6.
Bär
,
C.
and
Ginoux
,
N.
, “
Classical and quantum fields on Lorentzian manifolds
,” in
Global Differential Geometry
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
), pp.
359
400
;
Bär
,
C.
and
Ginoux
,
N.
, e-print arXiv:1104.1158v2 [math-ph].
7.
Baumgärtel
,
H.
,
Jurke
,
M.
, and
Lledó
,
F.
, “
Twisted duality of the CAR-algebra
,”
J. Math. Phys.
43
,
4158
4179
(
2002
);
Baumgärtel
,
H.
,
Jurke
,
M.
, and
Lledó
,
F.
, e-print arXiv:0204029v1 [math-ph].
8.
Calabrese
,
P.
,
Cardy
,
J.
, and
Tonni
,
E.
, “
Entanglement entropy of two disjoint intervals in conformal field theory
,”
J. Stat. Mech.: Theory Exp.
2009
(
11
),
P11001
;
Calabrese
,
P.
,
Cardy
,
J.
, and
Tonni
,
E.
, e-print arXiv:0905.2069v2 [hep-th].
9.
Casini
,
H.
, “
Relative entropy and the Bekenstein bound
,”
Classical Quantum Gravity
25
,
205021
(
2008
);
Casini
,
H.
, e-print arXiv:0804.2182v3 [hep-th].
10.
Casini
,
H.
and
Huerta
,
M.
, “
Entanglement entropy in free quantum field theory
,”
J. Phys. A: Math. Theor.
42
,
504007
(
2009
);
Casini
,
H.
and
Huerta
,
M.
, e-print arXiv:0905.2562v3 [hep-th].
11.
Cheeger
,
J.
,
Gromov
,
M.
, and
Taylor
,
M.
, “
Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds
,”
J. Differ. Geom.
17
,
15
53
(
1982
).
12.
Chernoff
,
P. R.
, “
Essential self-adjointness of powers of generators of hyperbolic equations
,”
J. Funct. Anal.
12
,
401
414
(
1973
).
13.
Clifton
,
R.
and
Halvorson
,
H.
, “
Entanglement and open systems in algebraic quantum field theory
,”
Stud. Hist. Philos. Mod. Phys. B
32
,
1
31
(
2001
);
Clifton
,
R.
and
Halvorson
,
H.
, e-print arXiv:0001107v1 [quant-ph].
14.
D’Antoni
,
C.
and
Longo
,
R.
, “
Interpolation by type I factors and the flip automorphism
,”
J. Funct. Anal.
51
,
361
371
(
1983
).
15.
D’Antoni
,
C.
and
Hollands
,
S.
, “
Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime
,”
Commun. Math. Phys.
261
,
133
159
(
2006
);
D’Antoni
,
C.
and
Hollands
,
S.
, e-print arXiv:0106028v3 [math-ph].
16.
Donald
,
M. J.
,
Horodecki
,
M.
, and
Rudolph
,
O.
, “
The uniqueness theorem for entanglement measures
,”
J. Math. Phys.
43
,
4252
4272
(
2002
);
Donald
,
M. J.
,
Horodecki
,
M.
, and
Rudolph
,
O.
, e-print arXiv:0105017v2 [quant-ph].
17.
Doplicher
,
S.
and
Longo
,
R.
, “
Standard and split inclusions of von Neumann algebras
,”
Invent. Math.
75
,
493
536
(
1984
).
18.
Foit
,
J. J.
, “
Abstract twisted duality for quantum free Fermi fields
,”
Publ. Res. Inst. Math. Sci.
19
,
729
741
(
1983
).
19.
Freedman
,
D. Z.
and
Proeyen
,
A. V.
,
Supergravity
, Theoretical Physics and Mathematical Physics (
Cambridge University Press
,
UK
,
2012
).
20.
Friedman
,
J. L.
,
Schleich
,
K.
, and
Witt
,
D. M.
, “
Topological censorship
,”
Phys. Rev. Lett.
71
,
1486
1489
(
1993
);
[PubMed]
Friedman
,
J. L.
,
Schleich
,
K.
, and
Witt
,
D. M.
, e-print arXiv:9305017v2 [gr-qc];
21.
Gradshteyn
,
I.
,
Ryzhik
,
I.
, and
Jeffrey
,
A.
,
Table of Integrals, Series, and Products
(
Academic Press
,
Cambridge, MA, USA
,
2000
).
22.
Hollands
,
S.
and
Sanders
,
K.
, “
Entanglement measures and their properties in quantum field theory
,” e-print arXiv:1702.04924v2 [quant-ph].
23.
Kadison
,
R.
and
Ringrose
,
J.
,
Fundamentals of the Theory of Operator Algebras. II: Advanced Theory
, Volume 16 of Graduate Studies in Mathematics (
American Mathematical Society
,
USA
,
1997
).
24.
Kugo
,
T.
and
Townsend
,
P.
, “
Supersymmetry and the division algebras
,”
Nucl. Phys. B
221
,
357
380
(
1983
).
25.
Lechner
,
G.
and
Sanders
,
K.
, “
Modular nuclearity: A generally covariant perspective
,”
Axioms
5
,
5
(
2016
);e-print arXiv:1511.09027v1 [math-ph].
26.
Lichnerowicz
,
A.
, “
Spineurs harmoniques
,”
C. R. Acad. Sci. Paris
257
,
7
9
(
1963
).
27.
Longo
,
R.
, Preliminary lecture notes on Conformal nets.
28.
Narnhofer
,
H.
, “
Entanglement, split and nuclearity in quantum field theory
,”
Rep. Math. Phys.
50
,
111
123
(
2002
).
29.

Our sign convention for the scalar curvature R is such that it is positive on the sphere.

30.

It satisfies the usual axioms of a norm only for p = 1, the case of interest for this paper. For p < 1, only a weaker version of these axioms hold.

31.

Here we restrict to the even part of the Fock-space.

32.
Rangamani
,
M.
and
Takayanagi
,
T.
,
Holographic Entanglement Entropy
, Volume 931 of Lecture Notes in Physics (
Springer International Publishing AG
,
2017
);
Rangamani
,
M.
and
Takayanagi
,
T.
, e-print arXiv:1609.01287v2 [hep-th].
33.
Schrödinger
,
E.
, “
Diracsches Elektron im Schwerefeld I
,”
Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl
11
,
105
128
(
1932
).
34.
Shimizu
,
K.
, “
C, P and T transformations in higher dimensions
,”
Prog. Theor. Phys.
74
,
610
613
(
1985
).
35.
Strohmaier
,
A.
, “
The Reeh–Schlieder property for quantum fields on stationary spacetimes
,”
Commun. Math. Phys.
215
,
105
118
(
2000
);
Strohmaier
,
A.
, e-print arXiv:0002054v2 [math-ph].
36.
Trautman
,
A.
, “
Connections and the Dirac operator on spinor bundles
,”
J. Geom. Phys.
58
,
238
252
(
2008
).
37.
Vedral
,
V.
,
Plenio
,
M. B.
,
Rippin
,
M. A.
, and
Knight
,
P. L.
, “
Quantifying entanglement
,”
Phys. Rev. Lett.
78
,
2275
2279
(
1997
);
Vedral
,
V.
,
Plenio
,
M. B.
,
Rippin
,
M. A.
, and
Knight
,
P. L.
, e-print arXiv:9702027v1 [quant-ph].
38.
Winkler
,
R.
and
Zülicke
,
U.
, “
Discrete symmetries of low-dimensional Dirac models: A selective reivew with a focus on condensed-matter realization
,”
ANZIAM J.
57
,
3
17
(
2015
);
Winkler
,
R.
and
Zülicke
,
U.
, e-print arXiv:1206.0355v2 [math-ph].
39.
Wolf
,
J. A.
, “
Essential self adjointness for the Dirac operator and its square
,”
Indiana Univ. Math. J.
22
,
611
640
(
1973
).
You do not currently have access to this content.