Contextuality has been identified as a potential resource responsible for the quantum advantage in several tasks. It is then necessary to develop a resource-theoretic framework for contextuality, both in its standard and generalized forms. Here we provide a formal resource-theoretic approach for generalized contextuality based on a physically motivated set of free operations with an explicit parametrization. Then, using an efficient linear programming characterization for the noncontextual set of prepared-and-measured statistics, we adapt known resource quantifiers for contextuality and nonlocality to obtain natural monotones for generalized contextuality in arbitrary prepare-and-measure experiments.
REFERENCES
1.
R. W.
Spekkens
, “Contextuality for preparations, transformations, and unsharp measurements
,” Phys. Rev. A
71
, 052108
(2005
).2.
D.
Schmid
, R. W.
Spekkens
, and E.
Wolfe
, “All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed sets of operational equivalences
,” e-print arXiv:1710.08434 [quant-ph] (2017
).3.
M.
Mazurek
, M.
Pusey
, R.
Kunjwal
, K.
Resch
, and R.
Spekkens
, “An experimental test of noncontextuality without unphysical idealizations
,” Nat. Commun.
7
, 11780
(2016
).4.
R.
Kunjwal
, “Beyond the Cabello-Severini-Winter framework: Making sense of contextuality without sharpness of measurements
,” e-print arXiv:1709.01098 [quant-ph] (2017
).5.
E. P.
Specker
, “Die logik nicht gleichzeitig entscheidbarer aussagen
,” Dialectica
14
, 239
(1960
).6.
S.
Kochen
and E.
Specker
, “The problem of hidden variables in quantum mechanics
,” J. Math. Mech.
17
, 59
–87
(1967
).7.
V.
Veitch
, C.
Ferrie
, D.
Gross
, and J.
Emerson
, “Negative quasi-probability as a resource for quantum computation
,” New J. Phys.
14
, 113011
(2012
).8.
R.
Raussendorf
, “Contextuality in measurement-based quantum computation
,” Phys. Rev. A
88
, 022322
(2013
).9.
M.
Um
, X.
Zhang
, J.
Zhang
, Y.
Wang
, S.
Yangchao
, D. L.
Deng
, L.
Duan
, and K.
Kim
, “Experimental certification of random numbers via quantum contextuality
,” Sci. Rep.
3
, 1627
(2013
).10.
M.
Howard
, J.
Wallman
, V.
Veitch
, and J.
Emerson
, “Contextuality supplies the ‘magic’ for quantum computation
,” Nature
510
, 351
–355
(2014
).11.
N.
Delfosse
, P.
Allard Guerin
, J.
Bian
, and R.
Raussendorf
, “Wigner function negativity and contextuality in quantum computation on rebits
,” Phys. Rev. X
5
, 021003
(2015
).12.
J.
Bermejo-Vega
, N.
Delfosse
, D. E.
Browne
, C.
Okay
, and R.
Raussendorf
, “Contextuality as a resource for models of quantum computation with qubits
,” Phys. Rev. Lett.
119
, 120505
(2017
).13.
D.
Schmid
and R. W.
Spekkens
, “Contextual advantage for state discrimination
,” Phys. Rev. X
8
(1
), 011015
(2018
).14.
D.
Saha
, P.
Horodecki
, and M.
Pawłowski
, “State independent contextuality advances one-way communication
,” e-print arXiv:1708.04751 [quant-ph] (2017
).15.
P.
Lillystone
, J. J.
Wallman
, and J.
Emerson
, “Contextuality and single-qubit stabilizer formalism
,” e-print arXiv:1802.06121 [quant-ph] (2018
).16.
A.
Karanjai
, J. J.
Wallman
, and S. D.
Bartlett
, “Contextuality bounds the efficiency of classical simulation of quantum processes
,” e-print arXiv:1802.07744 [quant-ph] (2018
).17.
D.
Saha
and A.
Chaturvedi
, “Preparation contextuality: The ground of quantum communication advantage
,” e-print arXiv:1802.07215 [quant-ph] (2018
).18.
C.
Sparaciari
, J.
Oppenheim
, and T.
Fritz
, “Resource theory for work and heat
,” Phys. Rev. A
96
, 052112
(2017
).19.
F. G. S. L.
Brandão
and G.
Gour
, “Reversible framework for quantum resource theories
,” Phys. Rev. Lett.
115
, 070503
(2015
).20.
E.
Chitambar
and M.-H.
Hsieh
, “Relating the resource theories of entanglement and quantum coherence
,” Phys. Rev. Lett.
117
, 020402
(2016
).21.
T.
Fritz
, “Resource convertibility and ordered commutative monoids
,” Math. Struct. Comput. Sci.
27
, 850
–938
(2017
).22.
B.
Coecke
, T.
Fritz
, and R. W.
Spekkens
, “A mathematical theory of resources
,” Inf. Comput.
250
, 59
–86
(2016
).23.
B.
Amaral
, A.
Cabello
, M. T.
Cunha
, and L.
Aolita
, “Noncontextual wirings
,” Phys. Rev. Lett.
120
, 130403
(2018
).24.
R.
Gallego
and L.
Aolita
, “Resource theory of steering
,” Phys. Rev. X
5
, 041008
(2015
).25.
F. G. S. L.
Brandão
, M.
Horodecki
, J.
Oppenheim
, J. M.
Renes
, and R. W.
Spekkens
, “Resource theory of quantum states out of thermal equilibrium
,” Phys. Rev. Lett.
111
, 250404
(2013
).26.
J.
Barrett
, N.
Linden
, S.
Massar
, S.
Pironio
, S.
Popescu
, and D.
Roberts
, “Nonlocal correlations as an information-theoretic resource
,” Phys. Rev. A
71
, 022101
(2005
).27.
J.
Allcock
, N.
Brunner
, N.
Linden
, S.
Popescu
, P.
Skrzypczyk
, and T.
Vértesi
, “Closed sets of nonlocal correlations
,” Phys. Rev. A
80
, 062107
(2009
).28.
R.
Gallego
, L. E. W. A.
Acín
, and M.
Navascués
, “Operational framework for nonlocality
,” Phys. Rev. Lett.
109
, 070401
(2012
).29.
P.
Joshi
, A.
Grudka
, K.
Horodecki
, M.
Horodecki
, P.
Horodecki
, and R.
Horodecki
, “No-broadcasting of non-signaling boxes via operations which transform local boxes into local ones
,” Quantum Inf. Comput.
13
, 567
(2013
).30.
J. I.
de Vicente
, “On nonlocality as a resource theory and nonlocality measures
,” J. Phys. A: Math. Theor.
47
, 424017
(2014
).31.
B.
Lang
, T.
Vértesi
, and M.
Navascués
, “Closed sets of correlations: Answers from the zoo
,” J. Phys. A: Math. Theor.
47
, 424029
(2014
).32.
R.
Gallego
and L.
Aolita
, “Nonlocality free wirings and the distinguishability between bell boxes
,” Phys. Rev. A
95
, 032118
(2017
).33.
K.
Horodecki
, A.
Grudka
, P.
Joshi
, W.
Kłobus
, and J.
Łodyga
, “Axiomatic approach to contextuality and nonlocality
,” Phys. Rev. A
92
, 032104
(2015
).34.
A.
Grudka
, K.
Horodecki
, M.
Horodecki
, P.
Horodecki
, R.
Horodecki
, P.
Joshi
, W.
Kłobus
, and A.
Wójcik
, “Quantifying contextuality
,” Phys. Rev. Lett.
112
, 120401
(2014
).35.
S.
Abramsky
, R. S.
Barbosa
, and S.
Mansfield
, “Contextual fraction as a measure of contextuality
,” Phys. Rev. Lett.
119
, 050504
(2017
).36.
37.
S. G. A.
Brito
, B.
Amaral
, and R.
Chaves
, “Quantifying bell nonlocality with the trace distance
,” Phys. Rev. A
97
, 022111
(2018
).38.
N.
Brunner
, D.
Cavalcanti
, S.
Pironio
, V.
Scarani
, and S.
Wehner
, “Bell nonlocality
,” Rev. Mod. Phys.
86
, 419
–478
(2014
).39.
M.
Navascués
, Y.
Guryanova
, M. J.
Hoban
, and A.
Acín
, “Almost quantum correlations
,” Nat. Commun.
6
, 6288
(2015
).40.
W.
Slofstra
, “The set of quantum correlations is not closed
,” e-print arXiv:1703.08618 [quant-ph] (2017
).41.
J.
Pearl
, Causality: Models, Reasoning, and Inference
(Cambridge University Press
, 2000
).42.
M. A.
Nielsen
and I. L.
Chuang
, Quantum Computation and Quantum Information
(Cambridge University Press
, 2000
).43.
A.
Abramsky
and A.
Brandenburger
, “The sheaf-theoretic structure of non-locality and contextuality
,” New J. Phys.
13
, 113036
(2011
).44.
E.
Amselem
, L. E.
Danielsen
, A. J.
López-Tarrida
, J. R.
Portillo
, M.
Bourennane
, and A.
Cabello
, “Experimental fully contextual correlations
,” Phys. Rev. Lett.
108
, 200405
(2012
).45.
B.
Amaral
and M.
Terra Cunha
, “On geometrical aspects of the graph approach to contextuality
,” e-print arXiv:1709.04812 [quant-ph] (2017
).46.
S.
Kullback
and R. A.
Leibler
, “On information and sufficiency
,” Ann. Math. Stat.
22
, 79
–86
(1951
).47.
W.
van Dam
, R. D.
Gill
, and P. D.
Grünwald
, “The statistical strength of nonlocality proofs
,” IEEE Trans. Inf. Theory
51
, 2812
(2005
).48.
R.
Horodecki
, P.
Horodecki
, M.
Horodecki
, and K.
Horodecki
, “Quantum entanglement
,” Rev. Mod. Phys.
81
, 865
(2009
).49.
S.
Bandyopadhyay
, S.
Halder
, and M.
Nathanson
, “Entanglement as a resource for local state discrimination in multipartite systems
,” Phys. Rev. A
94
, 022311
(2016
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.