Contextuality has been identified as a potential resource responsible for the quantum advantage in several tasks. It is then necessary to develop a resource-theoretic framework for contextuality, both in its standard and generalized forms. Here we provide a formal resource-theoretic approach for generalized contextuality based on a physically motivated set of free operations with an explicit parametrization. Then, using an efficient linear programming characterization for the noncontextual set of prepared-and-measured statistics, we adapt known resource quantifiers for contextuality and nonlocality to obtain natural monotones for generalized contextuality in arbitrary prepare-and-measure experiments.

1.
R. W.
Spekkens
, “
Contextuality for preparations, transformations, and unsharp measurements
,”
Phys. Rev. A
71
,
052108
(
2005
).
2.
D.
Schmid
,
R. W.
Spekkens
, and
E.
Wolfe
, “
All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed sets of operational equivalences
,” e-print arXiv:1710.08434 [quant-ph] (
2017
).
3.
M.
Mazurek
,
M.
Pusey
,
R.
Kunjwal
,
K.
Resch
, and
R.
Spekkens
, “
An experimental test of noncontextuality without unphysical idealizations
,”
Nat. Commun.
7
,
11780
(
2016
).
4.
R.
Kunjwal
, “
Beyond the Cabello-Severini-Winter framework: Making sense of contextuality without sharpness of measurements
,” e-print arXiv:1709.01098 [quant-ph] (
2017
).
5.
E. P.
Specker
, “
Die logik nicht gleichzeitig entscheidbarer aussagen
,”
Dialectica
14
,
239
(
1960
).
6.
S.
Kochen
and
E.
Specker
, “
The problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
,
59
87
(
1967
).
7.
V.
Veitch
,
C.
Ferrie
,
D.
Gross
, and
J.
Emerson
, “
Negative quasi-probability as a resource for quantum computation
,”
New J. Phys.
14
,
113011
(
2012
).
8.
R.
Raussendorf
, “
Contextuality in measurement-based quantum computation
,”
Phys. Rev. A
88
,
022322
(
2013
).
9.
M.
Um
,
X.
Zhang
,
J.
Zhang
,
Y.
Wang
,
S.
Yangchao
,
D. L.
Deng
,
L.
Duan
, and
K.
Kim
, “
Experimental certification of random numbers via quantum contextuality
,”
Sci. Rep.
3
,
1627
(
2013
).
10.
M.
Howard
,
J.
Wallman
,
V.
Veitch
, and
J.
Emerson
, “
Contextuality supplies the ‘magic’ for quantum computation
,”
Nature
510
,
351
355
(
2014
).
11.
N.
Delfosse
,
P.
Allard Guerin
,
J.
Bian
, and
R.
Raussendorf
, “
Wigner function negativity and contextuality in quantum computation on rebits
,”
Phys. Rev. X
5
,
021003
(
2015
).
12.
J.
Bermejo-Vega
,
N.
Delfosse
,
D. E.
Browne
,
C.
Okay
, and
R.
Raussendorf
, “
Contextuality as a resource for models of quantum computation with qubits
,”
Phys. Rev. Lett.
119
,
120505
(
2017
).
13.
D.
Schmid
and
R. W.
Spekkens
, “
Contextual advantage for state discrimination
,”
Phys. Rev. X
8
(
1
),
011015
(
2018
).
14.
D.
Saha
,
P.
Horodecki
, and
M.
Pawłowski
, “
State independent contextuality advances one-way communication
,” e-print arXiv:1708.04751 [quant-ph] (
2017
).
15.
P.
Lillystone
,
J. J.
Wallman
, and
J.
Emerson
, “
Contextuality and single-qubit stabilizer formalism
,” e-print arXiv:1802.06121 [quant-ph] (
2018
).
16.
A.
Karanjai
,
J. J.
Wallman
, and
S. D.
Bartlett
, “
Contextuality bounds the efficiency of classical simulation of quantum processes
,” e-print arXiv:1802.07744 [quant-ph] (
2018
).
17.
D.
Saha
and
A.
Chaturvedi
, “
Preparation contextuality: The ground of quantum communication advantage
,” e-print arXiv:1802.07215 [quant-ph] (
2018
).
18.
C.
Sparaciari
,
J.
Oppenheim
, and
T.
Fritz
, “
Resource theory for work and heat
,”
Phys. Rev. A
96
,
052112
(
2017
).
19.
F. G. S. L.
Brandão
and
G.
Gour
, “
Reversible framework for quantum resource theories
,”
Phys. Rev. Lett.
115
,
070503
(
2015
).
20.
E.
Chitambar
and
M.-H.
Hsieh
, “
Relating the resource theories of entanglement and quantum coherence
,”
Phys. Rev. Lett.
117
,
020402
(
2016
).
21.
T.
Fritz
, “
Resource convertibility and ordered commutative monoids
,”
Math. Struct. Comput. Sci.
27
,
850
938
(
2017
).
22.
B.
Coecke
,
T.
Fritz
, and
R. W.
Spekkens
, “
A mathematical theory of resources
,”
Inf. Comput.
250
,
59
86
(
2016
).
23.
B.
Amaral
,
A.
Cabello
,
M. T.
Cunha
, and
L.
Aolita
, “
Noncontextual wirings
,”
Phys. Rev. Lett.
120
,
130403
(
2018
).
24.
R.
Gallego
and
L.
Aolita
, “
Resource theory of steering
,”
Phys. Rev. X
5
,
041008
(
2015
).
25.
F. G. S. L.
Brandão
,
M.
Horodecki
,
J.
Oppenheim
,
J. M.
Renes
, and
R. W.
Spekkens
, “
Resource theory of quantum states out of thermal equilibrium
,”
Phys. Rev. Lett.
111
,
250404
(
2013
).
26.
J.
Barrett
,
N.
Linden
,
S.
Massar
,
S.
Pironio
,
S.
Popescu
, and
D.
Roberts
, “
Nonlocal correlations as an information-theoretic resource
,”
Phys. Rev. A
71
,
022101
(
2005
).
27.
J.
Allcock
,
N.
Brunner
,
N.
Linden
,
S.
Popescu
,
P.
Skrzypczyk
, and
T.
Vértesi
, “
Closed sets of nonlocal correlations
,”
Phys. Rev. A
80
,
062107
(
2009
).
28.
R.
Gallego
,
L. E. W. A.
Acín
, and
M.
Navascués
, “
Operational framework for nonlocality
,”
Phys. Rev. Lett.
109
,
070401
(
2012
).
29.
P.
Joshi
,
A.
Grudka
,
K.
Horodecki
,
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
, “
No-broadcasting of non-signaling boxes via operations which transform local boxes into local ones
,”
Quantum Inf. Comput.
13
,
567
(
2013
).
30.
J. I.
de Vicente
, “
On nonlocality as a resource theory and nonlocality measures
,”
J. Phys. A: Math. Theor.
47
,
424017
(
2014
).
31.
B.
Lang
,
T.
Vértesi
, and
M.
Navascués
, “
Closed sets of correlations: Answers from the zoo
,”
J. Phys. A: Math. Theor.
47
,
424029
(
2014
).
32.
R.
Gallego
and
L.
Aolita
, “
Nonlocality free wirings and the distinguishability between bell boxes
,”
Phys. Rev. A
95
,
032118
(
2017
).
33.
K.
Horodecki
,
A.
Grudka
,
P.
Joshi
,
W.
Kłobus
, and
J.
Łodyga
, “
Axiomatic approach to contextuality and nonlocality
,”
Phys. Rev. A
92
,
032104
(
2015
).
34.
A.
Grudka
,
K.
Horodecki
,
M.
Horodecki
,
P.
Horodecki
,
R.
Horodecki
,
P.
Joshi
,
W.
Kłobus
, and
A.
Wójcik
, “
Quantifying contextuality
,”
Phys. Rev. Lett.
112
,
120401
(
2014
).
35.
S.
Abramsky
,
R. S.
Barbosa
, and
S.
Mansfield
, “
Contextual fraction as a measure of contextuality
,”
Phys. Rev. Lett.
119
,
050504
(
2017
).
36.
A.
Schrijver
,
Theory of Linear and Integer Programming
(
John Wiley and Sons
,
1999
).
37.
S. G. A.
Brito
,
B.
Amaral
, and
R.
Chaves
, “
Quantifying bell nonlocality with the trace distance
,”
Phys. Rev. A
97
,
022111
(
2018
).
38.
N.
Brunner
,
D.
Cavalcanti
,
S.
Pironio
,
V.
Scarani
, and
S.
Wehner
, “
Bell nonlocality
,”
Rev. Mod. Phys.
86
,
419
478
(
2014
).
39.
M.
Navascués
,
Y.
Guryanova
,
M. J.
Hoban
, and
A.
Acín
, “
Almost quantum correlations
,”
Nat. Commun.
6
,
6288
(
2015
).
40.
W.
Slofstra
, “
The set of quantum correlations is not closed
,” e-print arXiv:1703.08618 [quant-ph] (
2017
).
41.
J.
Pearl
,
Causality: Models, Reasoning, and Inference
(
Cambridge University Press
,
2000
).
42.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
43.
A.
Abramsky
and
A.
Brandenburger
, “
The sheaf-theoretic structure of non-locality and contextuality
,”
New J. Phys.
13
,
113036
(
2011
).
44.
E.
Amselem
,
L. E.
Danielsen
,
A. J.
López-Tarrida
,
J. R.
Portillo
,
M.
Bourennane
, and
A.
Cabello
, “
Experimental fully contextual correlations
,”
Phys. Rev. Lett.
108
,
200405
(
2012
).
45.
B.
Amaral
and
M.
Terra Cunha
, “
On geometrical aspects of the graph approach to contextuality
,” e-print arXiv:1709.04812 [quant-ph] (
2017
).
46.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
47.
W.
van Dam
,
R. D.
Gill
, and
P. D.
Grünwald
, “
The statistical strength of nonlocality proofs
,”
IEEE Trans. Inf. Theory
51
,
2812
(
2005
).
48.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
,
865
(
2009
).
49.
S.
Bandyopadhyay
,
S.
Halder
, and
M.
Nathanson
, “
Entanglement as a resource for local state discrimination in multipartite systems
,”
Phys. Rev. A
94
,
022311
(
2016
).
You do not currently have access to this content.