In this paper, using the language of spin-half particles, Hardy’s paradox is examined within different semantics: a partial one, a many-valued one, and the one defined as a set of weak values of projection operators. As it is shown in this paper, any of such non-classical semantics can resolve Hardy’s paradox.

1.
L.
Hardy
, “
Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories
,”
Phys. Rev. Lett.
68
(
20
),
2981
2984
(
1992
).
2.
Y.
Aharonov
,
A.
Botero
,
S.
Popescu
,
R.
Reznik
, and
J.
Tollaksen
, “
Revisiting Hardy’s paradox: Counterfactual statements, real measurements, entanglement and weak values
,”
Phys. Lett. A
301
,
130
138
(
2002
).
3.
R.
Griffiths
,
Consistent Quantum Theory
, Hardy’s Paradox (
Cambridge University Press
,
Cambridge, UK
,
2002
), Chap. 25.
4.
S.
Gottwald
,
A Treatise on Many-Valued Logics
(
Research Studies Press Ltd.
,
Baldock, Hertfordshire, England
,
2001
).
5.
H.
Leblanc
,
R.
Stern
, and
R.
Gumb
,
Essays in Epistemology and Semantics
(
Haven Publications
,
New York
,
1983
).
6.
E.
Adams
,
A Primer of Probability Logic
(
University of Chicago Press
,
Chicago, IL
,
1996
).
7.
A.
Varzi
, “
Supervaluationism and its logics
,”
Mind
116
,
633
676
(
2007
).
8.
R.
Keefe
,
Theories of Vagueness
(
Cambridge University Press
,
Cambridge
,
2000
).
9.
A.
Bolotin
, “
Quantum supervaluationism
,”
J. Math. Phys.
58
(
12
),
122106-1
122106-7
(
2017
).
10.
A.
Bolotin
, “
Truth values of quantum phenomena
,”
Int. J. Theor. Phys.
57
(
7
),
2124
2132
(
2018
).
11.
J.-Y.
Bèziau
, “
Bivalence excluded middle and non contradiction
,” in
The Logica Yearbook 2003
, edited by
L.
Behounek
(
Academy of Sciences
,
Prague
,
2003
).
12.
J.
Pykacz
, “
Can many-valued logic help to comprehend quantum phenomena?
,”
Int. J. Theor. Phys.
54
,
4367
4375
(
2015
).
13.
J.
Pykacz
,
Quantum Physics, Fuzzy Sets and Logic. Steps Towards a Many-Valued Interpretation of Quantum Mechanics
(
Springer
,
Cham
,
2015
).
14.
L.
Vaidman
, “
Past of a quantum particle
,”
Phys. Rev. A
87
(
5
),
052104-1
052104-6
(
2013
).
15.
B.
Svensson
, “
Quantum weak values and logic: An uneasy couple
,”
Found. Phys.
47
(
3
),
430
452
(
2017
).
You do not currently have access to this content.