We address the Hofstadter problem on a two-dimensional square lattice system. We propose a novel perspective on its mathematical structure of the corresponding tight-binding Hamiltonian from a viewpoint of the Langlands duality, a mathematical conjecture relevant to a wide range of the modern mathematics including number theory, solvable systems, representations, and geometry. It is known that the Hamiltonian can be algebraically written by means of the quantum group Uq(sl2). We claim that Hofstadter’s fractal is deeply related with the Langlands duality of the quantum group. In addition, from this perspective, the existence of the corresponding elliptic curve expression interpreted from the tight-binging Hamiltonian implies a more fascinating connection with the Langlands program and quantum geometry.

1.
R. P.
Langlands
,
Problems in the Theory of Automorphic Forms to Salomon Bochner in Gratitude
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1970
), pp.
18
61
.
2.
B.
Feigin
and
E.
Frenkel
, “
Quantization of soliton systems and Langlands duality
,”
Adv. Stud. Pure Math.
61
,
165
274
(
2011
);
E.
Frenkel
and
D.
Hernandez
Math Soc. Japan Tokyo
(
2011
); e-print arXiv:1606.05301 [math.QA].
3.
E.
Frenkel
and
D.
Hernandez
, “
Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers
,” e-print arXiv:1606.05301 [math.QA].
4.
E.
Frenkel
and
D.
Hernandez
, “
Langlands duality for representations of quantum groups
,”
Math. Ann.
349
(
3
),
705
746
(
2011
).
5.
D. R.
Hofstadter
, “
Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
,
2239
2249
(
1976
).
6.
P. B.
Wiegmann
and
A. V.
Zabrodin
, “
Bethe-ansatz for the bloch electron in magnetic field
,”
Phys. Rev. Lett.
72
,
1890
1893
(
1994
).
7.
Y.
Hatsuda
,
H.
Katsura
, and
Y.
Tachikawa
, “
Hofstadter’s butterfly in quantum geometry
,”
New J. Phys.
18
(
10
),
103023
(
2016
); e-print arXiv:1606.01894 [hep-th].
8.
Y.
Hatsuda
,
Y.
Sugimoto
, and
Z.
Xu
, “
Calabi-Yau geometry and electrons on 2d lattices
,”
Phys. Rev. D
95
,
086004
(
2017
).
9.
W. G.
Chambers
, “
Linear-network model for magnetic breakdown in two dimensions
,”
Phys. Rev.
140
,
A135
A143
(
1965
).
10.
L. D.
Faddeev
, “
Modular double of quantum group
,”
Math. Phys. Stud.
21
,
149
156
(
2000
); e-print arXiv:math/9912078 [math-qa].
11.
K.
McGerty
, “
Langlands duality for representations and quantum groups at a root of unity
,”
Commun. Math. Phys.
296
(
1
),
89
109
(
2010
).
12.
E.
Frenkel
and
N.
Reshetikhin
, “
The q-characters of representations of quantum affine algebras and deformations of W-algebras
,”
Contemp. Math.
248
,
163
205
(
1999
); e-print arXiv:math/9810055 (
1998
).
13.
E.
Frenkel
and
N.
Reshetikhin
, “
Deformations of W-algebras associated to simple Lie algebras
,”
Comm. Math. Phys.
197
(
1
),
1
32
(
1998
); e-print arXiv:q-alg/9708006 (
1997
).
14.
E.
Frenkel
and
N.
Reshetikhin
, “
Quantum affine algebras and deformations of the virasoro and w-algebras
,”
Commun. Math. Phys.
178
(
1
),
237
264
(
1996
), https://projecteuclid.org:443/euclid.cmp/1104286563.
15.
M.
Aganagic
,
E.
Frenkel
, and
A.
Okounkov
, “
Quantum q-Langlands correspondence
,” e-print arXiv:1701.03146 [hep-th].
16.
B.
Feigin
and
E.
Frenkel
, “
Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras
,”
Int. J. Mod. Phys. A
7
,
197
215
(
1992
).
17.
A.
Kapustin
and
E.
Witten
, “
Electric-magnetic duality and the geometric Langlands program
,”
Commun. Number Theory Phys.
1
,
1
236
(
2007
); e-print arXiv:hep-th/0604151 [hep-th].
18.
P.
Goddard
,
J.
Nuyts
, and
D.
Olive
, “
Gauge theories and magnetic charge
,”
Nucl. Phys. B
125
(
1
),
1
28
(
1977
).
19.
M.-X.
Huang
,
A.
Klemm
, and
M.
Poretschkin
, “
Refined stable pair invariants for E-, M- and [p, q]-strings
,”
J. High Energy Phys.
11
,
112
(
2013
); e-print arXiv:1308.0619 [hep-th].
20.
P.
Seidel
, “
Vanishing cycles and mutation
,” in
European Congress of Mathematics
, edited by
C.
Casacuberta
,
R. M.
Miró-Roig
,
J.
Verdera
, and
S.
Xambó-Descamps
(
Birkhäuser Basel
,
Basel
,
2001
), pp.
65
85
.
21.
Y.
Hatsuda
,
Y.
Sugimoto
, and
Z.
Xu
, “
Calabi-Yau geometry and electrons on 2d lattices
,”
Phys. Rev. D
95
(
8
),
086004
(
2017
); e-print arXiv:1701.01561 [hep-th].
22.
K.
Ikeda
, “
Quantum hall effect and Langlands program
,” e-print arXiv:1708.00419 [cond-mat.mes-hall].
You do not currently have access to this content.