We introduce the Schwarzian, simplified Schwarzian, and Schwarzian Korteweg-de Vries equations on a time scale that are invariant under the fractional linear transformations. As an application, we derive their solutions and establish the invariant disconjugacy condition for second order dynamic equations on a time scale. Furthermore, we consider the Ermakov dynamic equation and the Ermakov-Lewis adiabatic invariant on a time scale. We discuss specific examples of discrete, quantum, and continuous time scales to compare our equations with the well-known ones. We also derive the linearization of the Ermakov equation and the corresponding Painleve equation on a time scale.

1.
Berkovich
,
L. M.
,
Transformations of Ordinary Differential Equations
(
Samara University
,
Samara
,
2006
), Vol. 156.
2.
Bohner
,
M.
and
Peterson
,
A.
,
Dynamic Equations on Time Scales: An Introduction with Applications
(
Birkhäuser
,
Boston
,
2001
).
3.
Dosly
,
O.
and
Rehak
,
P.
,
Half–Linear Differential Equations
, Mathematics Studies 202 (
North-Holland
,
Amsterdam
,
2005
).
4.
Erbe
,
L.
and
Hilger
,
S.
, “
Sturmian theory on measure chain
,”
Differ. Equations Dyn. Syst.
1
,
223
246
(
1993
).
5.
Erbe
,
L.
,
Peterson
,
A.
, and
Saker
,
S. H.
, “
Hille-Kneser-type criteria for second-order dynamic equations on time scales
,”
Adv. Differ. Equations
2006
,
51401
, 18 pages.
6.
Ermakov
,
V. P.
, “
Second order differential equations
Kiev University Izvestia
,
9
,
1
25
(
1880
) (Russian)
[for English translation see
Ermakov
,
V. P.
,
Appl. Anal. Discrete Math.
2
,
123
145
(
2008
)].
7.
Hilger
,
S.
, “
Analysis on measure chains—A unified approach to continuous and discrete calculus
,”
Results Math.
18
,
18
56
(
1990
).
8.
Hovhannisyan
,
G.
and
Ruff
,
O.
, “
Darboux transformations on a space scale
,”
J. Math. Anal. Appl.
434
,
1690
1718
(
2016
).
9.
Kummer
,
E. E.
, “
Uber die hypergeometrische reihe
,”
J. Reine Angew. Math.
15
,
39
83
(
1836
).
10.
Leach
,
P. G. L.
and
Andriopoulos
,
K.
, “
Ermakov equation: A commentary
,”
Appl. Anal. Discrete Math.
2
,
146
157
(
2008
).
11.
Lewis
, Jr.,
R. H.
, “
Classical and quantum systems with time dependent harmonic oscillator-type Hamiltonians
,”
Phys. Rev. Lett.
18
,
510
512
(
1967
).
12.
Lewis
,
R. H.
and
Leach
,
P. G. L.
, “
A resonance formulation for invariants of particle motion in a one-dimensional time-dependent potential
,”
Ann. Phys.
164
,
47
76
(
1985
).
13.
Mammana
,
G.
, “
Decomposizione delle expressioni differeziali lineare omogenee improdotti di fattori simbolici e applicazione differeziali lineari
,”
Math. Z.
33
,
186
231
(
1931
).
14.
Nehari
,
Z.
, “
The Schwarzian derivative and schlicht functions
,”
Bull. Am. Math. Soc
55
,
545
551
(
1949
).
15.
Nijhoff
,
F.
,
Atkinson
,
J.
, and
Hietarinta
,
J.
, “
Soliton solutions for ABS lattice equations. I. Cauchy matrix approach
,”
J. Phys. A: Math. Theor.
42
,
404005
(
2009
), 34 pages.
16.
Osgood
,
B.
,
Old and New on Schwarzian Derivative Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F. W. Gehring
(
Springer Verlag
,
1998
), pp.
275
308
.
17.
Ovsienko
,
V.
and
Tabachnikov
,
S.
,
Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups
(
Cambridge University Press
,
Cambridge
,
2005
).
18.
Pinney
,
E.
, “
The nonlinear differential equation y″(x) + p(x)y + cy−3 = 0
,”
Proc. Am. Math. Soc.
1
,
681
(
1950
).
19.
Ramani
,
A. I.
,
Grammaticos
,
B.
, and
Tamizhmani
,
K. M.
, “
Special function solutions of the discrete Painleve equations
,”
Comput. Math. Appl.
42
,
603
614
(
2001
).
20.
Schief
,
W. K.
, “
A discrete Pinney equation
,”
Appl. Math. Lett.
10
(
3
),
13
15
(
1997
).
21.
Schwarz
,
H.
,
Mathematische Abhandlungen
(
Springer
,
Berlin
,
1890
).
22.
Swanson
,
C. A.
,
Comparison and Oscillation Theory of Linear Differential Equations
(
Academic Press
,
New York and London
,
1968
).
23.
Werner
,
A.
and
Eliezer
,
J. C.
, “
The lengthening pendulum
,”
J. Aust. Math. Soc.
9
,
331
336
(
1969
).
24.
Weiss
,
J.
, “
The Painleve property for partial differential equations
,”
J. Math. Phys.
24
,
1405
1413
(
1983
).
You do not currently have access to this content.