We introduce the Schwarzian, simplified Schwarzian, and Schwarzian Korteweg-de Vries equations on a time scale that are invariant under the fractional linear transformations. As an application, we derive their solutions and establish the invariant disconjugacy condition for second order dynamic equations on a time scale. Furthermore, we consider the Ermakov dynamic equation and the Ermakov-Lewis adiabatic invariant on a time scale. We discuss specific examples of discrete, quantum, and continuous time scales to compare our equations with the well-known ones. We also derive the linearization of the Ermakov equation and the corresponding Painleve equation on a time scale.
REFERENCES
1.
Berkovich
, L. M.
, Transformations of Ordinary Differential Equations
(Samara University
, Samara
, 2006
), Vol. 156.2.
Bohner
, M.
and Peterson
, A.
, Dynamic Equations on Time Scales: An Introduction with Applications
(Birkhäuser
, Boston
, 2001
).3.
Dosly
, O.
and Rehak
, P.
, Half–Linear Differential Equations
, Mathematics Studies 202 (North-Holland
, Amsterdam
, 2005
).4.
Erbe
, L.
and Hilger
, S.
, “Sturmian theory on measure chain
,” Differ. Equations Dyn. Syst.
1
, 223
–246
(1993
).5.
Erbe
, L.
, Peterson
, A.
, and Saker
, S. H.
, “Hille-Kneser-type criteria for second-order dynamic equations on time scales
,” Adv. Differ. Equations
2006
, 51401
, 18 pages.6.
Ermakov
,V. P.
, “Second order differential equations
” Kiev University Izvestia
, 9
, 1
–25
(1880
) (Russian)[for English translation see
Ermakov
, V. P.
, Appl. Anal. Discrete Math.
2
, 123
–145
(2008
)].7.
Hilger
, S.
, “Analysis on measure chains—A unified approach to continuous and discrete calculus
,” Results Math.
18
, 18
–56
(1990
).8.
Hovhannisyan
, G.
and Ruff
, O.
, “Darboux transformations on a space scale
,” J. Math. Anal. Appl.
434
, 1690
–1718
(2016
).9.
Kummer
, E. E.
, “Uber die hypergeometrische reihe
,” J. Reine Angew. Math.
15
, 39
–83
(1836
).10.
Leach
, P. G. L.
and Andriopoulos
, K.
, “Ermakov equation: A commentary
,” Appl. Anal. Discrete Math.
2
, 146
–157
(2008
).11.
Lewis
, Jr., R. H.
, “Classical and quantum systems with time dependent harmonic oscillator-type Hamiltonians
,” Phys. Rev. Lett.
18
, 510
–512
(1967
).12.
Lewis
, R. H.
and Leach
, P. G. L.
, “A resonance formulation for invariants of particle motion in a one-dimensional time-dependent potential
,” Ann. Phys.
164
, 47
–76
(1985
).13.
Mammana
, G.
, “Decomposizione delle expressioni differeziali lineare omogenee improdotti di fattori simbolici e applicazione differeziali lineari
,” Math. Z.
33
, 186
–231
(1931
).14.
Nehari
, Z.
, “The Schwarzian derivative and schlicht functions
,” Bull. Am. Math. Soc
55
, 545
–551
(1949
).15.
Nijhoff
, F.
, Atkinson
, J.
, and Hietarinta
, J.
, “Soliton solutions for ABS lattice equations. I. Cauchy matrix approach
,” J. Phys. A: Math. Theor.
42
, 404005
(2009
), 34 pages.16.
Osgood
, B.
, Old and New on Schwarzian Derivative Quasiconformal Mappings and Analysis: A Collection of Papers Honoring F. W. Gehring
(Springer Verlag
, 1998
), pp. 275
–308
.17.
Ovsienko
, V.
and Tabachnikov
, S.
, Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups
(Cambridge University Press
, Cambridge
, 2005
).18.
Pinney
, E.
, “The nonlinear differential equation y″(x) + p(x)y + cy−3 = 0
,” Proc. Am. Math. Soc.
1
, 681
(1950
).19.
Ramani
, A. I.
, Grammaticos
, B.
, and Tamizhmani
, K. M.
, “Special function solutions of the discrete Painleve equations
,” Comput. Math. Appl.
42
, 603
–614
(2001
).20.
Schief
, W. K.
, “A discrete Pinney equation
,” Appl. Math. Lett.
10
(3
), 13
–15
(1997
).21.
22.
Swanson
, C. A.
, Comparison and Oscillation Theory of Linear Differential Equations
(Academic Press
, New York and London
, 1968
).23.
Werner
, A.
and Eliezer
, J. C.
, “The lengthening pendulum
,” J. Aust. Math. Soc.
9
, 331
–336
(1969
).24.
Weiss
, J.
, “The Painleve property for partial differential equations
,” J. Math. Phys.
24
, 1405
–1413
(1983
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.