We construct spectral triples on a class of particular inductive limits of matrix-valued function algebras. In the special case of the Jiang-Su algebra, we employ a particular AF-embedding.

1.
Aiello
,
V.
,
Guido
,
D.
, and
Isola
,
T.
, “
Spectral triples for noncommutative solenoidal spaces from self-coverings
,”
J. Math. Anal. Appl.
448
,
1378
1412
(
2017
).
2.
Connes
,
A.
, “
C*-algèbres et géométrie différentielle
,”
C.R. Acad. Sc. Paris t.
290
, Série A,
599
604
(
1980
).
3.
Connes
,
A.
,
Noncommutative Geometry
(
Academic Press
,
1994
).
4.
Dąbrowski
,
L.
,
D’Andrea
,
F.
,
Landi
,
G.
, and
Wagner
,
E.
, “
Dirac operators on all Podles quantum spheres
,”
J. Noncomm. Geom.
1
,
213
239
(
2007
).
5.
D’Andrea
,
F.
and
Dąbrowski
,
L.
, “
Dirac operators on quantum projective spaces CPq.
,”
Commun. Math. Phys.
295
,
731
790
(
2010
).
6.
Ivan
,
C.
and
Christensen
,
E.
, “
Spectral triples for AF C*-algebras and metrics on the Cantor set
,”
J. Oper. Theory
56
,
17
46
(
2006
).
7.
Jiang
,
X.
and
Su
,
H.
, “
On a simple unital projectionless C*-algebra
,”
Am. J. Math.
121
,
359
413
(
1999
).
8.
Neshveyev
,
S.
and
Tuset
,
L.
, “
The Dirac operator on compact quantum groups
,”
J. Reine Angew. Math.
2010
(
641
),
1
20
.
9.
Rordam
,
M.
and
Stormer
,
E.
,
Classification of Nuclear C*-Algebras. Entropy in Operator Algebras
, Encyclopaedia of Mathematical Sciences (
Springer-Verlag
,
2002
), Vol. 126.
10.
Skalski
,
A.
and
Zacharias
,
J.
, “
A note on spectral triples and quasidiagonality
,”
Expositiones Math.
27
,
137
141
(
2009
).
11.
Winter
,
W.
, “
On the classification of simple Z-stable C*-algebras with real rank zero and finite decomposition rank
,”
J. London Math. Soc.
74
,
167
183
(
2006
).
You do not currently have access to this content.