We construct spectral triples on a class of particular inductive limits of matrix-valued function algebras. In the special case of the Jiang-Su algebra, we employ a particular AF-embedding.
REFERENCES
1.
Aiello
, V.
, Guido
, D.
, and Isola
, T.
, “Spectral triples for noncommutative solenoidal spaces from self-coverings
,” J. Math. Anal. Appl.
448
, 1378
–1412
(2017
).2.
Connes
, A.
, “C*-algèbres et géométrie différentielle
,” C.R. Acad. Sc. Paris t.
290
, Série A, 599
–604
(1980
).3.
4.
Dąbrowski
, L.
, D’Andrea
, F.
, Landi
, G.
, and Wagner
, E.
, “Dirac operators on all Podles quantum spheres
,” J. Noncomm. Geom.
1
, 213
–239
(2007
).5.
D’Andrea
, F.
and Dąbrowski
, L.
, “Dirac operators on quantum projective spaces .
,” Commun. Math. Phys.
295
, 731
–790
(2010
).6.
Ivan
, C.
and Christensen
, E.
, “Spectral triples for AF C*-algebras and metrics on the Cantor set
,” J. Oper. Theory
56
, 17
–46
(2006
).7.
Jiang
, X.
and Su
, H.
, “On a simple unital projectionless C*-algebra
,” Am. J. Math.
121
, 359
–413
(1999
).8.
Neshveyev
, S.
and Tuset
, L.
, “The Dirac operator on compact quantum groups
,” J. Reine Angew. Math.
2010
(641
), 1
–20
.9.
Rordam
, M.
and Stormer
, E.
, Classification of Nuclear C*-Algebras. Entropy in Operator Algebras
, Encyclopaedia of Mathematical Sciences (Springer-Verlag
, 2002
), Vol. 126.10.
Skalski
, A.
and Zacharias
, J.
, “A note on spectral triples and quasidiagonality
,” Expositiones Math.
27
, 137
–141
(2009
).11.
Winter
, W.
, “On the classification of simple -stable C*-algebras with real rank zero and finite decomposition rank
,” J. London Math. Soc.
74
, 167
–183
(2006
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.