This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.

1.
R. A.
Kennedy
and
P.
Sadeghi
,
Hilbert Space Methods in Signal Processing
(
Cambridge University Press
,
Cambridge
,
2013
).
2.
R.
Ramamoorthi
and
P.
Hanrahan
,
Proceedings of SIGGRAPH
(
ACM
,
2001
), pp.
117
128
.
3.
D.
Mahajan
,
R.
Ramamoorthi
, and
B.
Curless
,
IEEE Trans. Pattern Anal. Mach. Intell.
30
,
197
213
(
2008
).
4.
E.
Celeghini
and
M. A.
del Olmo
,
Ann. Phys.
333
,
90
103
(
2013
).
5.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
,
J. Math. Phys.
57
,
072105
(
2016
).
6.
E.
Celeghini
and
M. A.
del Olmo
,
Ann. Phys.
335
,
78
85
(
2013
).
7.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
, “
SU(2), associated Laguerre polynomials and rigged Hilbert spaces
,” in
Proceedings of the 10-th International Symposium ‘Quantum Theory and Symmetries’ (QTS10), Varna, Bulgaria, 19–25 June 2017
(
Springer
,
2018
).
8.
E.
Celeghini
,
M.
Gadella
, and
M. A.
del Olmo
,
Acta Polytech.
57
(
6
),
379
384
(
2017
).
9.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
(
Clarendon Press
,
Oxford
,
1958
).
10.
A.
Bohm
,
The Rigged Hilbert Space and Quantum Mechanics
, Volume 78 of Springer Lecture Notes in Physics (
Springer
,
New York
,
1978
).
11.
J. E.
Roberts
,
Commun. Math. Phys.
3
,
98
119
(
1966
).
12.
J. P.
Antoine
,
J. Math. Phys.
10
,
53
69
(
1969
).
13.
O.
Melsheimer
,
J. Math. Phys.
15
,
902
916
(
1974
).
14.
M.
Gadella
and
F.
Gómez
,
Found. Phys.
32
,
815
869
(
2002
).
15.
M.
Gadella
and
F.
Gómez
,
Int. J. Theor. Phys.
42
,
2225
2254
(
2003
).
16.
V. I.
Kukulin
,
V. M.
Krasnapolsky
, and
J.
Horacek
,
Theory of Resonances. Principles and Applications
(
Academia
,
Praha
,
1989
).
17.
A.
Bohm
,
J. Math. Phys.
22
,
2813
2823
(
1981
).
18.
A.
Bohm
and
M.
Gadella
,
Dirac Kets, Gamow Vectors and Gelfand Triplets
, Volume 348 of Springer Lecture Notes in Physics (
Springer
,
Berlin
,
1989
).
19.
O.
Civitarese
and
M.
Gadella
,
Phys. Rep.
396
,
41
113
(
2004
).
20.
A. R.
Bohm
,
M.
Loewe
, and
B.
van de Ven
,
Fortschr. Phys.
51
,
551
568
(
2003
).
21.
A. R.
Bohm
,
M.
Gadella
, and
P.
Kielenowski
,
Symmetry, Integrability Geom.: Methods Appl.
7
,
086
(
2011
).
22.
G.
Marcucci
and
C.
Conti
,
Phys. Rev. A
94
,
052136
(
2016
).
23.
I. M.
Gelfand
and
G. E.
Shilov
,
Generalized Functions
(
Academic
,
New York
,
1964
), Vol. 1.
24.
M.
Reed
and
B.
Simon
,
Functional Analysis
(
Academic
,
New York
,
1972
).
25.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
26.
C.
Cohen-Tanudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley and Hermann
,
NewYork, Paris
,
1991
).
27.
K.
Atkinson
and
W.
Hang
,
Spherical Harmonics Approximations on the Unit Sphere
(
Springer
,
Berlin, New York
,
2012
).
28.
D. M.
Brink
and
G. R.
Satchler
,
Angular Momentum
(
Clarendon Press
,
Oxford
,
1968
).
You do not currently have access to this content.