This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.
REFERENCES
1.
R. A.
Kennedy
and P.
Sadeghi
, Hilbert Space Methods in Signal Processing
(Cambridge University Press
, Cambridge
, 2013
).2.
R.
Ramamoorthi
and P.
Hanrahan
, Proceedings of SIGGRAPH
(ACM
, 2001
), pp. 117
–128
.3.
D.
Mahajan
, R.
Ramamoorthi
, and B.
Curless
, IEEE Trans. Pattern Anal. Mach. Intell.
30
, 197
–213
(2008
).4.
E.
Celeghini
and M. A.
del Olmo
, Ann. Phys.
333
, 90
–103
(2013
).5.
E.
Celeghini
, M.
Gadella
, and M. A.
del Olmo
, J. Math. Phys.
57
, 072105
(2016
).6.
E.
Celeghini
and M. A.
del Olmo
, Ann. Phys.
335
, 78
–85
(2013
).7.
E.
Celeghini
, M.
Gadella
, and M. A.
del Olmo
, “SU(2), associated Laguerre polynomials and rigged Hilbert spaces
,” in Proceedings of the 10-th International Symposium ‘Quantum Theory and Symmetries’ (QTS10), Varna, Bulgaria, 19–25 June 2017
(Springer
, 2018
).8.
E.
Celeghini
, M.
Gadella
, and M. A.
del Olmo
, Acta Polytech.
57
(6
), 379
–384
(2017
).9.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
(Clarendon Press
, Oxford
, 1958
).10.
A.
Bohm
, The Rigged Hilbert Space and Quantum Mechanics
, Volume 78 of Springer Lecture Notes in Physics (Springer
, New York
, 1978
).11.
J. E.
Roberts
, Commun. Math. Phys.
3
, 98
–119
(1966
).12.
J. P.
Antoine
, J. Math. Phys.
10
, 53
–69
(1969
).13.
O.
Melsheimer
, J. Math. Phys.
15
, 902
–916
(1974
).14.
M.
Gadella
and F.
Gómez
, Found. Phys.
32
, 815
–869
(2002
).15.
M.
Gadella
and F.
Gómez
, Int. J. Theor. Phys.
42
, 2225
–2254
(2003
).16.
V. I.
Kukulin
, V. M.
Krasnapolsky
, and J.
Horacek
, Theory of Resonances. Principles and Applications
(Academia
, Praha
, 1989
).17.
A.
Bohm
, J. Math. Phys.
22
, 2813
–2823
(1981
).18.
A.
Bohm
and M.
Gadella
, Dirac Kets, Gamow Vectors and Gelfand Triplets
, Volume 348 of Springer Lecture Notes in Physics (Springer
, Berlin
, 1989
).19.
O.
Civitarese
and M.
Gadella
, Phys. Rep.
396
, 41
–113
(2004
).20.
A. R.
Bohm
, M.
Loewe
, and B.
van de Ven
, Fortschr. Phys.
51
, 551
–568
(2003
).21.
A. R.
Bohm
, M.
Gadella
, and P.
Kielenowski
, Symmetry, Integrability Geom.: Methods Appl.
7
, 086
(2011
).22.
G.
Marcucci
and C.
Conti
, Phys. Rev. A
94
, 052136
(2016
).23.
I. M.
Gelfand
and G. E.
Shilov
, Generalized Functions
(Academic
, New York
, 1964
), Vol. 1.24.
25.
M.
Abramowitz
and I. A.
Stegun
, Handbook of Mathematical Functions
(Dover
, New York
, 1972
).26.
C.
Cohen-Tanudji
, B.
Diu
, and F.
Laloe
, Quantum Mechanics
(Wiley and Hermann
, NewYork, Paris
, 1991
).27.
K.
Atkinson
and W.
Hang
, Spherical Harmonics Approximations on the Unit Sphere
(Springer
, Berlin, New York
, 2012
).28.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.