The neighbourhood of the largest eigenvalue λmax in the Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble (LUE) is referred to as the soft edge. It is known that there exists a particular centring and scaling such that the distribution of λmax tends to a universal form, with an error term bounded by 1/N2/3. We take up the problem of computing the exact functional form of the leading error term in a large N asymptotic expansion for both the GUE and LUE—two versions of the LUE are considered, one with the parameter a fixed and the other with a proportional to N. Both settings in the LUE case allow for an interpretation in terms of the distribution of a particular weighted path length in a model involving exponential variables on a rectangular grid, as the grid size gets large. We give operator theoretic forms of the corrections, which are corollaries of knowledge of the first two terms in the large N expansion of the scaled kernel and are readily computed using a method due to Bornemann. We also give expressions in terms of the solutions of particular systems of coupled differential equations, which provide an alternative method of computation. Both characterisations are well suited to a thinned generalisation of the original ensemble, whereby each eigenvalue is deleted independently with probability (1 − ξ). In Sec. V, we investigate using simulation the question of whether upon an appropriate centring and scaling a wider class of complex Hermitian random matrix ensembles have their leading correction to the distribution of λmax proportional to 1/N2/3.

1.
Adachi
,
S.
,
Toda
,
M.
, and
Kubotani
,
H.
, “
Asymptotic analysis of singular values of rectangular complex matrices in the Laguerre and fixed trace ensembles
,”
J. Phys. A: Math. Theor.
44
,
292002
(
2011
).
2.
Baik
,
J.
and
Rains
,
E. M.
, “
Symmetrized random permutations
,” in
Random Matrix Models and Their Applications
, Volume 40 of Mathematical Sciences Research Institute Publications, edited by
Bleher
,
P. M.
and
Its
,
A. R.
(
Cambridge University Press
,
Cambridge
,
2001
), pp.
171
208
.
3.
Bergen
,
T.
and
Duits
,
M.
, “
Mesoscopic fluctuations for the thinned circular unitary ensemble
,”
Math. Phys. Anal. Geom.
20
,
19
(
2017
).
4.
Bogomolny
,
E.
,
Bohigas
,
O.
,
Leboeuf
,
P.
, and
Monastra
,
A. C.
, “
On the spacing distribution of the Riemann zeros: Corrections to the asymptotic result
,”
J. Phys. A: Math. Gen.
39
,
10743
10754
(
2006
).
5.
Bohigas
,
O.
, “
Compound nucleus resonances, random matrices, quantum chaos
,” in
Recent Perspectives in Random Matrix Theory and Number Theory
, Volume 322 of London Mathematical Society Lecture Note Series, edited by
Mezzadri
,
F.
and
Snaith
,
N. C.
(
Cambridge University Press
,
Cambridge
,
2005
), pp.
147
183
.
6.
Bohigas
,
O.
and
Pato
,
M. P.
, “
Missing levels in correlated spectra
,”
Phys. Lett. B
595
,
171
176
(
2004
).
7.
Bornemann
,
F.
, “
On the numerical evaluation of distributions in random matrix theory: A review
,”
Markov Processes Relat. Fields
16
,
803
866
(
2010
).
8.
Bornemann
,
F.
, “
On the numerical evaluation of Fredholm determinants
,”
Math. Comput.
79
,
871
915
(
2010
).
9.
Bornemann
,
F.
,
Forrester
,
P. J.
, and
Mays
,
A.
, “
Finite size effects for spacing distributions in random matrix theory: Circular ensembles and Riemann zeros
,”
Stud. Appl. Math.
138
,
401
437
(
2017
).
10.
Bothner
,
T.
and
Buckingham
,
R.
, “
Large deformations of the Tracy-Widom distribution. I. Non-oscillatory asymptotics
,”
Commun. Math. Phys.
359
,
223
263
(
2017
).
11.
Charlier
,
C.
and
Claeys
,
T.
, “
Thinning and conditioning of the circular unitary ensemble
,”
Random Matrices: Theory Appl.
06
,
1750007
(
2017
).
12.
Choup
,
L. N.
, “
Edgeworth expansion of the largest eigenvalue distribution of GUE and LUE
,”
Int. Math. Res. Not.
2006
,
61049
(
2006
).
13.
Dyson
,
F. J.
, “
Statistical theory of energy levels of complex systems. I
,”
J. Math. Phys.
3
,
140
156
(
1962
).
14.
Dyson
,
F. J.
, “
Statistical theory of energy levels of complex systems. III
,”
J. Math. Phys.
3
,
166
175
(
1962
).
15.
Dyson
,
F. J.
, “
The three fold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics
,”
J. Math. Phys.
3
,
1199
1215
(
1962
).
16.
El Karoui
,
N.
, “
A rate of convergence result for the largest eigenvalue of complex white Wishart matrices
,”
Ann. Probab.
34
,
2077
2117
(
2006
).
17.
Erdös
,
L.
, “
Universality of Wigner random matrices: A survey of recent results
,”
Russ. Math. Surv.
66
,
507
(
2011
).
18.
Forrester
,
P. J.
, “
The spectrum edge of random matrix ensembles
,”
Nucl. Phys. B
402
,
709
728
(
1993
).
19.
Forrester
,
P. J.
,
Log-Gases and Random Matrices
(
Princeton University Press
,
Princeton, NJ
,
2010
).
20.
Forrester
,
P. J.
, “
Asymptotics of spacing distributions 50 years later
,” in
Random Matrix Theory, Interacting Particle Systems and Integrable Systems
, edited by
Deift
,
P.
and
Forrester
,
P.
(
MSRI Publications
,
Berkeley
,
2014
), Vol. 65, pp.
199
222
.
21.
Forrester
,
P. J.
and
Mays
,
A.
, “
Finite-size corrections in random matrix theory and Odlykzko’s dataset for the Riemann zeros
,”
Proc. R. Soc. A
471
,
20150436
(
2015
).
22.
Forrester
,
P. J.
and
Witte
,
N. S.
, “
Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE
,”
Commun. Math. Phys.
219
,
357
398
(
2000
).
23.
Forrester
,
P. J.
and
Witte
,
N. S.
, “
Application of the τ-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE and CUE
,”
Commun. Pure Appl. Math.
55
,
679
727
(
2002
).
24.
Garoni
,
T. M.
,
Forrester
,
P. J.
, and
Frankel
,
N. E.
, “
Asymptotic corrections to the eigenvalue density of the GUE and LUE
,”
J. Math. Phys.
46
,
103301
(
2005
).
25.
Gaudin
,
M.
, “
Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire
,”
Nucl. Phys.
25
,
447
458
(
1961
).
26.
Götze
,
F.
and
Tikhomirov
,
A.
, “
The rate of convergence for spectra of GUE and LUE matrix ensembles
,”
Cent. Eur. J. Math.
3
,
666
704
(
2005
).
27.
Haagerup
,
U.
and
Thornbjornsen
,
S.
, “
Asymptotic expansions for the Gaussian unitary ensemble
,”
Infinite Dimens. Anal. Quantum Probab. Relat. Top.
15
,
1250003
(
2012
).
28.
Jimbo
,
M.
,
Miwa
,
T.
,
Môri
,
Y.
, and
Sato
,
M.
, “
Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent
,”
Phys. D
1
,
80
158
(
1980
).
29.
Johansson
,
K.
, “
Shape fluctuations and random matrices
,”
Commun. Math. Phys.
209
,
437
476
(
2000
).
30.
Johnstone
,
I. M.
, “
On the distribution of the largest principal component
,”
Ann. Stat.
29
,
295
327
(
2001
).
31.
Johnstone
,
I. M.
, “
Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy-Widom limits and rates of convergence
,”
Ann. Stat.
36
,
2638
2716
(
2008
).
32.
Johnstone
,
I. M.
and
Ma
,
Z.
, “
Fast approach to the Tracy-Widom law at the edge of GOE and GUE
,”
Ann. Appl. Probab.
22
,
1962
1988
(
2012
).
33.
Katz
,
N. M.
and
Sarnak
,
P.
, “
Zeroes of zeta functions and symmetry
,”
Bull. Am. Math. Soc.
36
,
1
26
(
1999
).
34.
Keating
,
J. P.
and
Snaith
,
N. C.
, “
Random matrix theory and ζ(1/2 + it)
,”
Commun. Math. Phys.
214
,
57
89
(
2001
).
35.
Lambert
,
G.
, “
Incomplete determinantal processes: From random matrix to Poisson statistics
,” e-print arXiv:1612.00806.
36.
Ma
,
Z.
, “
Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices
,”
Bernoulli
18
,
322
359
(
2012
).
37.
Mehta
,
M. L.
, “
On the statistical properties of the level-spacings in nuclear spectra
,”
Nucl. Phys. B
18
,
395
419
(
1960
).
38.
Odlyzko
,
A. M.
, “
The 1020 th zero of the Riemann zeta function and 70 million of its neighbours
,” (
1989
).
39.
Odlyzko
,
A. M.
, “
The 1022-nd zero of the Riemann zeta function
,” in
Dynamical, Spectral, and Arithmeitc Zeta Functions
, Volume 290BB of Contemporary Mathematics, edited by
van Frankenhuysen
,
M.
and
Lapidus
,
M. L.
(
American Mathematical Society
,
Providence, RI
,
2001
), pp.
139
144
.
40.
Pastur
,
L.
and
Shcherbina
,
M.
,
Eigenvalue Distribution of Large Random Matrices
(
American Mathematical Society
,
Providence, RI
,
2011
).
41.
Péché
,
S.
, “
Universality results for the largest eigenvalues of some sample covariance ensembles
,”
Prob. Theory Relat. Fields
143
,
481
516
(
2009
).
42.
Prähofer
,
M.
and
Spohn
,
H.
, “
Scale invariance of the PNG droplet and the Airy process
,”
J. Stat. Phys.
108
,
1071
1106
(
2002
).
43.
Prähofer
,
M.
and
Spohn
,
H.
, “
Exact scaling functions for one-dimensional stationary KPZ growth
,”
J. Stat. Phys.
115
,
255
279
(
2004
).
44.
Rahman
,
A. A.
, “
Moments of the Laguerre β ensembles
,” M.Sc. thesis,
The University of Melbourne
,
2016
.
45.
Tracy
,
C. A.
and
Widom
,
H.
, “
Fredholm determinants, differential equations and matrix models
,”
Commun. Math. Phys.
163
,
33
72
(
1994
).
46.
Witte
,
N. S.
and
Forrester
,
P. J.
, “
Moments of the Gaussian β ensembles and the large N expansion of the densities
,”
J. Math. Phys.
55
,
083302
(
2014
).
You do not currently have access to this content.